<< Chapter < Page Chapter >> Page >

Gravitational potential difference

An object at a height "h"

Δ U = - G M m R + h G M m R

Δ U = G M m 1 R 1 R + h

We can eliminate reference to gravitational constant and mass of Earth by using relation of gravitational acceleration at Earth’s surface ( g = g 0 ),

g = G M R 2

G M = g R 2

Substituting in the equation of change in potential energy, we have :

Δ U = m g R 2 1 R 1 R + h

Δ U = m g R 2 X h R R + h

Δ U = m g h 1 + h R

It is expected that this general formulation for the change in potential energy should be reduced to approximate form. For h<<R, we can neglect “h/R” term and,

Δ U = m g h

Maximum height

For velocity less than escape velocity (the velocity at which projectile escapes the gravitation field of Earth), the projected particle reaches a maximum height and then returns to the surface of Earth.

When we consider that acceleration due to gravity is constant near Earth’s surface, then applying conservation of mechanical energy yields :

1 2 m v 2 + 0 = 0 + m g h

h = v 2 2 g

However, we have seen that “mgh” is not true measure of change in potential energy. Like in the case of change in potential energy, we come around the problem of variable acceleration by applying conservation of mechanical energy with reference to infinity.

Maximum height

The velocity is zero at maximum height, "h".

K i + U i = K f + U f

G M m R + 1 2 m v 2 = 0 + G M m R + h

G M R + h = G M R v 2 2

R + h = G M G M R v 2 2

h = G M G M R v 2 2 R

h = G M G M + v 2 R 2 G M R v 2 2

h = v 2 R 2 G M R v 2

We can also write the expression of maximum height in terms of acceleration at Earth’s surface using the relation :

G M = g R 2

Substituting in the equation and rearranging,

h = v 2 2 g v 2 R

This is the maximum height attained by a projection, which is thrown up from the surface of Earth.

Example

Problem 1: A particle is projected vertically at 5 km/s from the surface Earth. Find the maximum height attained by the particle. Given, radius of Earth = 6400 km and g = 10 m / s 2 .

Solution : We note here that velocity of projectile is less than escape velocity 11.2 km/s. The maximum height attained by the particle is given by:

h = v 2 2 g v 2 R

Putting values,

h = 5 X 10 3 2 2 X 10 5 X 10 3 2 6.4 X 10 6

h = 25 X 10 6 2 X 10 25 X 10 6 6.4 X 10 6

h = 1.55 x 10 6 = 1550000 m = 1550 k m

It would be interesting to compare the result, if we consider acceleration to be constant. The height attained is :

h = v 2 2 g = 25 X 10 6 20 = 1.25 X 10 6 = 1250000 m = 1250 k m

As we can see, approximation of constant acceleration due to gravity, results in huge discrepancy in the result.

Escape velocity

In general, when a body is projected up, it returns to Earth after achieving a certain height. The height of the vertical flight depends on the speed of projection. Greater the initial velocity greater is the height attained.

Here, we seek to know the velocity of projection for which body does not return to Earth. In other words, the body escapes the gravitational influence of Earth and moves into interstellar space. We can know this velocity in verities of ways. The methods are equivalent, but intuitive in approach. Hence, we shall present here all such considerations :

1: binding energy :

Gravitational binding energy represents the energy required to eject a body out of the influence of a gravitational field. It is equal to the energy of the system, but opposite in sign. In the absence of friction, this energy is the mechanical energy (sum of potential and kinetic energy) in gravitational field.

Questions & Answers

what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
what's cornea?
Majak Reply
what are cell
Achol
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask