<< Chapter < Page Chapter >> Page >

Example

Problem 1: A charged particle of mass “m” carries a charge “q”. It is projected upward from Earth’s surface in an electric field “E”, which is directed downward. Determine the nature of potential energy of the particle at a given height, “h”.

Solution : The charged particle is acted upon simultaneously by both gravitational and electrostatic fields. Here, gravity works against displacement. The work by gravity is, therefore, negative. Hence, potential energy arising from gravitational field (with reference from surface) is positive as :

U G = - W G = - - F G h = m E G h = m g h

As given in the question, the electrostatic field is acting downward. Since charge on the particle is positive, electrostatic force acts downward. It means that work by electrostatic force is also negative. Hence, potential energy arising from electrostatic field (with reference from surface) is :

U E = - W E = - - F E h = q E E h = q E h

Total potential energy of the charged particle at a height “h” is :

U = U G + U E = m g h + q E h = m g + q E h

The quantities in the bracket are constant. Clearly, potential energy is a function of height.

It is important to realize that description in terms of respective fields enables us to calculate forces without referring to either Newton's gravitation law or Coulomb's law of electrostatic force.

Gravitational field due to a point mass

Determination of gravitational force strength due to a point mass is easy. It is so because, Newton's law of gravitation provides the expression for determining force between two particles.

Let us consider a particle of mass, "M", for which we are required to find gravitational field strength at a certain point, "P". For convenience, let us consider that the particle is situated at the origin of the reference system. Let the point, where gravitational field is to be determined, lies at a distance "r" from the origin on the reference line.

Gravitational field strength

Gravitational field at a point "P" due to mass "M"

We should make it a point to understand that the concept of gravitational field is essentially "one" particle/ body/entity concept. We need to measure gravitational force at the point, "P", on a unit mass as required by the definition of field strength. It does not exist there. In order to determine field strength, however, we need to visualize as if unit mass is actually present there.

We can do this two ways. Either we visualize a point mass exactly of unit value or we visualize any mass, "m", and then calculate gravitational force. In the later case, we divide the gravitational force as obtained from Newton's law of gravitation by the mass to get the force per unit mass. In either case, we call this point mass as test mass. If we choose to use a unit mass, then :

E = F = G M X 1 r 2 = G M r 2

On the other hand, if we choose any arbitrary test mass, "m", then :

E = F m = G M m r 2 m = G M r 2

However, there is a small catch here. The test mass has its own gravitational field. This may unduly affect determination of gravitational field due to given particle. In order to completely negate this possibility, we may consider a mathematical expression as given here, which is more exact for defining gravitational field :

E = lim m 0 F m

Nevertheless, we know that gravitational force is not a very strong force. The field of a particle of unit mass can safely be considered negligible.

The expression for the gravitational field at point "P", as obtained above, is a scalar value. This expression, therefore, measures the magnitude of gravitational field - not its direction. We can realize from the figure shown above that gravitational field is actually directed towards origin, where the first particle is situated. This direction is opposite to the positive reference direction. Hence, gravitational field strength in vector form is preceded by a negative sign :

E = F m = G M r 2 r

where " r " is unit vector in the reference direction.

The equation obtained here for the gravitational field due to a particle of mass, "M", is the basic equation for determining gravitational field for any system of particles or rigid body. The general idea is to consider the system being composed of small elements, each of which can be treated at particle. We, then, need to find the net or resultant field, following superposition principle. We shall use this technique to determine gravitational field due to certain regularly shaped geometric bodies in the next module.

Example

Problem 2 : The gravitational field in a region is in xy-plane is given by 3 i + j . A particle moves along a straight line in this field such that work done by gravitation is zero. Find the slope of straight line.

Solution : The given gravitational field is a constant field. Hence, gravitational force on the particle is also constant. Work done by a constant force is given as :

W = F . r

Let "m" be the mass of the particle. Then, work is given in terms of gravitational field as :

W = m E . r

Work done in the gravitational field is zero, if gravitational field and displacement are perpendicular to each other. If “ s 1 ” and “ s 2 ” be the slopes of the direction of gravitational field and that of straight path, then the slopes of two quantities are related for being perpendicular as :

Work by gravitational force

Gravitational field and displacement of particle are perpendicular to each other.

s 1 s 2 = - 1

Note that slope of a straight line is usually denoted by letter “m”. However, we have used letter “s” in this example to distinguish it from mass, which is also represented by letter “m”.

In order to find the slope of displacement, we need to know the slope of the straight line, which is perpendicular to the direction of gravitational field.

Now, the slope of the line of action of gravitational field is :

s 1 = 1 3

Hence, for gravitational field and displacement to be perpendicular,

s 1 s 2 = 1 3 s 2 = - 1

s 2 = - 3

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask