<< Chapter < Page Chapter >> Page >

Coordinate system types

Coordinate system types determine position of a point with measurements of distance or angle or combination of them. A spatial point requires three measurements in each of these coordinate types. It must, however, be noted that the descriptions of a point in any of these systems are equivalent. Different coordinate types are mere convenience of appropriateness for a given situation. Three major coordinate systems used in the study of physics are :

  • Rectangular (Cartesian)
  • Spherical
  • Cylindrical

Rectangular (Cartesian) coordinate system is the most convenient as it is easy to visualize and associate with our perception of motion in daily life. Spherical and cylindrical systems are specifically designed to describe motions, which follow spherical or cylindrical curvatures.

Rectangular (cartesian) coordinate system

The measurements of distances along three mutually perpendicular directions, designated as x,y and z, completely define a point A (x,y,z).

A point in rectangular coordinate system

A point is specified with three coordinate values

From geometric consideration of triangle OAB,

r = OB 2 + AB 2

From geometric consideration of triangle OBD,

OB 2 = BD 2 + OD 2

Combining above two relations, we have :

r = BD 2 + OD 2 + AB 2

r = x 2 + y 2 + z 2

The numbers are assigned to a point in the sequence x, y, z as shown for the points A and B.

Specifying points in rectangular coordinate system

A point is specified with coordinate values

Rectangular coordinate system can also be viewed as volume composed of three rectangular surfaces. The three surfaces are designated as a pair of axial designations like “xy” plane. We may infer that the “xy” plane is defined by two lines (x and y axes) at right angle. Thus, there are “xy”, “yz” and “zx” rectangular planes that make up the space (volumetric extent) of the coordinate system (See figure).

Planes in rectangular coordinate system

Three mutually perpendicular planes define domain of rectangular system

The motion need not be extended in all three directions, but may be limited to two or one dimensions. A circular motion, for example, can be represented in any of the three planes, whereby only two axes with an origin will be required to describe motion. A linear motion, on the other hand, will require representation in one dimension only.

Spherical coordinate system

A three dimensional point “A” in spherical coordinate system is considered to be located on a sphere of a radius “r”. The point lies on a particular cross section (or plane) containing origin of the coordinate system. This cross section makes an angle “θ” from the “zx” plane (also known as longitude angle). Once the plane is identified, the angle, φ, that the line joining origin O to the point A, makes with “z” axis, uniquely defines the point A (r, θ, φ).

Spherical coordinate system

A point is specified with three coordinate values

It must be realized here that we need to designate three values r, θ and φ to uniquely define the point A. If we do not specify θ, the point could then lie any of the infinite numbers of possible cross section through the sphere like A'(See Figure below).

Spherical coordinate system

A point is specified with three coordinate values

From geometric consideration of spherical coordinate system :

r = x 2 + y 2 + z 2 x = r sin φ cos θ y = r sin φ sin θ z = r cos φ tan φ = x 2 + y 2 z tan θ = y z

These relations can be easily obtained, if we know to determine projection of a directional quantity like position vector. For example, the projection of "r" in "xy" plane is "r sinφ". In turn, projection of "r sinφ" along x-axis is ""r sinφ cosθ". Hence,

x = r sin φ cos θ

In the similar fashion, we can determine other relations.

Cylindrical coordinate system

A three dimensional point “A” in cylindrical coordinate system is considered to be located on a cylinder of a radius “r”. The point lies on a particular cross section (or plane) containing origin of the coordinate system. This cross section makes an angle “θ” from the “zx” plane. Once the plane is identified, the height, z, parallel to vertical axis “z” uniquely defines the point A(r, θ, z)

Cylindrical coordinate system

A point is specified with three coordinate values

r = x 2 + y 2 x = r cos θ y = r sin θ z = z tan θ = y z

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask