<< Chapter < Page Chapter >> Page >
The angular momentum in rotation is a subset of angular momentum about a point in general motion.

Like linear momentum, angular momentum is the measure of the "quantity of motion". From Newton's second law, we know that first time derivative of linear momentum gives net external force on a particle. By analogy, we expect that this quantity (angular momentum) should have an expression such that its first time derivative yields torque on the particle.

Angular momentum about a point

Angular momentum is associated with a particle in motion. The motion need not be rotational motion, but any motion. Importantly, it is measured with respect to a fixed point.

Angular momentum of a particle about a point is defined as a vector, denoted as " ".

= r x p

where " r " is the linear vector connecting the position of the particle with the "point" about which angular momentum is measured and " p " is the linear momentum vector. In case, the point coincides with the origin of coordinate system, the vector " r " becomes the position vector.

We should note here that small letter "ℓ" is used to denote angular momentum of a particle. The corresponding capital letter "L" is reserved for angular momentum of a system of particle or rigid body. This convention helps to distinguish the context and may be adhered to.

The SI unit of angular momentum is kg - m 2 s , which is equivalent to J-s.

Magnitude of angular momentum

Like in the case of torque, the magnitude of angular momentum can be obtained using any of the following relations :

Angular momentum of a particle

Angular momentum in terms of enclosed angle.

1: Angular momentum in terms of angle enclosed

= r p sin θ

2: Angular momentum in terms of force perpendicular to position vector

= r p

3: Angular momentum in terms of moment arm

= r p

If the particle is moving with a velocity " v ", then the expression of angular momentum becomes :

= r x p = m ( r x v )

Again, we can interpret this vector product as in the case of torque. Its magnitude can be obtained using any of the following relations :

= m r v sin θ = m r v = m r v

Problem : A particle of mass, "m", moves with a constant velocity "v" along a straight line parallel to x-axis as shown in the figure. Find the angular momentum of the particle about the origin of the coordinate system. Also discuss the nature of angular momentum in this case.

Angular momentum of a particle

The particle is moving with a constant velocity.

Solution : The magnitude of the angular momentum is given by :

= m r v sin θ

This expression can be rearranged as :

= m v ( r sin θ )

From the ΔOAC, it is clear that :

Angular momentum of a particle

The particle is moving with a constant velocity.

r sin θ = AC

At another instant, we have :

r ' sin θ ' = BD

But the perpendicular distance between two parallel lines are same (AC = BD). Thus,

r sin θ = a constant

Also, the quantities "m" and "v" are constants. Therefore, angular momentum of the moving particle about origin "O" is a constant.

= m v ( r sin θ ) = a constant

Since angular momentum is constant, its rate of change with time is zero. But, time rate of change of angular momentum is equal to torque (we shall develop this relation in next module). It means that torque on the particle is zero as time derivate of a constant is zero. Indeed it should be so as the particle is not accelerated. This result underlines the fact that the concept of angular momentum is consistent even for the description of linear motion as set out in the beginning of this module.

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask