<< Chapter < Page Chapter >> Page >
There are four fundamental force types.

There are different types of forces that may operate on a body. The forces are different in origin and characterization. However, there are only four fundamental forces. Other force types are simply manifestation of these fundamental forces.

In this module, we shall describe the four fundamental force types. The other force types, which are required to be considered in mechanics, will be discussed in a separate module. In this sense, this module is preparatory to the study of dynamics. The treatment of the force types, however, will be preliminary and limited in scope to the extent which fulfills the requirement of dynamics.

The four fundamental force types are :

  • Gravitational force
  • Electromagnetic force
  • Weak force
  • Strong force (nuclear force)

Gravitational force

The force of gravitation is a long distance force, arising due to the very presence of matter. Netwon’s gravitation law provides the empirical expression of gravitational force between two point like masses m 1 and m 2 separated by a distance “r” as :

F G = G m 1 m 2 r 2

where “G” is the universal constant. G = 6.7 x 10 - 11 N - m 2 / kg 2 .

Gravitational force is a pair of pull on the two bodies directed towards each other. It is always a force of attraction. Gravitation is said to follow inverse square law as the force is inversely proportional to the square of the distance between the bodies.

Since the force of gravitation follows inverse square law, the force can be depicted as a conservative force field, in which work done in moving a mass from one point to another is independent of the path followed. The gravitation force is the weakest of all fundamental forces but can assume great magnitude as there are truly massive bodies present in the universe.

In the case of Earth (mass “M”) and a body (mass “m”), the expression for the gravitational force is :

F G = G M m r 2

F G = m g

where “g” is the acceleration due to gravity.

g = G M r 2

The most important aspect of acceleration due to gravity here is that it is independent of the mass of the body “m”, which is being subjected to acceleration. Its value is taken as 9.81 m / s 2 .

Gravitation force has a typical relation with the mass of the body on which its effect is studied. We know that mass (“m”) is part of the Newton’s second law that relates force with acceleration. Incidentally, the same mass of the body (“m”) is also a part of the equation og gravitation that determines force. Because of this special condition, bodies of different masses are subjected to same acceleration. Such is not the case with other forces and the resulting acceleration is not independent of mass.

Consider for example a body of mass "m'" instead of "m". Then,

F G = G M m' r 2 = m' g

g = G M r 2

We see here that gravitational force on the body is proportional to the mass of the body itself. As such, the acceleration, which is equal to the force divided by mass, remains same.

Knowing that acceleration due to gravitational force in the Earth’s vicinity is a constant, we can calculate gravitational pull on a body of mass "m", using relation second law of motion :

Questions & Answers

1. Discuss the processes involved during exchange of fluids between intra and extracellular space.
Mustapha Reply
what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is biology
Inenevwo
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask