<< Chapter < Page Chapter >> Page >
All quantities pertaining to motion are characteristically relative in nature.

The concept of relative motion in two or three dimensions is exactly same as discussed for the case of one dimension. The motion of an object is observed in two reference systems as before – the earth and a reference system, which moves with constant velocity with respect to earth. The only difference here is that the motion of the reference system and the object ,being observed, can take place in two dimensions. The condition that observations be carried out in inertial frames is still a requirement to the scope of our study of relative motion in two dimensions.

As a matter of fact, theoretical development of the equation of relative velocity is so much alike with one dimensional case that the treatment in this module may appear repetition of the text of earlier module. However, application of relative velocity concept in two dimensions is different in content and details, requiring a separate module to study the topic.

Relative motion in two dimensions

The important aspect of relative motion in two dimensions is that we can not denote vector attributes of motion like position, velocity and acceleration as signed scalars as in the case of one dimension. These attributes can now have any direction in two dimensional plane (say “xy” plane) and as such they should be denoted with either vector notations or component scalars with unit vectors.

Position of the point object

We consider two observers A and B. The observer “A” is at rest with respect to earth, whereas observer “B” moves with a constant velocity with respect to the observer on earth i.e. “A”. The two observers watch the motion of the point like object “C”. The motions of “B” and “C” are as shown along dotted curves in the figure below. Note that the path of observer "B" is a straight line as it is moving with constant velocity. However, there is no such restriction on the motion of object C, which can be accelerated as well.

The position of the object “C” as measured by the two observers “A” and “B” are r C A and r C B . The observers are represented by their respective frame of reference in the figure.

Positions

The observers are represented by their respective frame of reference.

Here,

r C A = r B A + r C B

Velocity of the point object

We can obtain velocity of the object by differentiating its position with respect to time. As the measurements of position in two references are different, it is expected that velocities in two references are different,

v C A = đ r C A đ t

and

v C B = đ r C B đ t

The velocities of the moving object “C” ( v C A and v C B ) as measured in two reference systems are shown in the figure. Since the figure is drawn from the perspective of “A” i.e. the observer on the ground, the velocity v C A of the object "C" with respect to "A" is tangent to the curved path.

Velocity

The observers measure different velocities.

Now, we can obtain relation between these two velocities, using the relation r C A = r B A + r C B and differentiating the terms of the equation with respect to time as :

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask