<< Chapter < Page Chapter >> Page >
All quantities pertaining to motion are characteristically relative in nature.

The measurements, describing motion, are subject to the state of motion of the frame of reference with respect to which measurements are made. Our day to day perception of motion is generally earth’s view – a view common to all bodies at rest with respect to earth. However, we encounter occasions when there is perceptible change to our earth’s view. One such occasion is traveling on the city trains. We find that it takes lot longer to overtake another train on a parallel track. Also, we see two people talking while driving separate cars in the parallel lane, as if they were stationary to each other!. In terms of kinematics, as a matter of fact, they are actually stationary to each other - even though each of them are in motion with respect to ground.

In this module, we set ourselves to study motion from a perspective other than that of earth. Only condition we subject ourselves is that two references or two observers making the measurements of motion of an object, are moving at constant velocity (We shall learn afterward that two such reference systems moving with constant velocity is known as inertial frames, where Newton’s laws of motion are valid.).

The observers themselves are not accelerated. There is, however, no restriction on the motion of the object itself, which the observers are going to observe from different reference systems. The motion of the object can very well be accelerated. Further, we shall study relative motion for two categories of motion : (i) one dimension (in this module) and (ii) two dimensions (in another module). We shall skip three dimensional motion – though two dimensional study can easily be extended to three dimensional motion as well.

Relative motion in one dimension

We start here with relative motion in one dimension. It means that the individual motions of the object and observers are along a straight line with only two possible directions of motion.

Position of the point object

We consider two observers “A” and “B”. The observer “A” is at rest with earth, whereas observer “B” moves with a velocity v B A with respect to the observer “A”. The two observers watch the motion of the point like object “C”. The motions of “B” and “C” are along the same straight line.

It helps to have a convention about writing subscripted symbol such as v B A . The first subscript indicates the entity possessing the attribute (here velocity) and second subscript indicates the entity with respect to which measurement is made. A velocity like v B A shall, therefore, mean velocity of “B” with respect to “A”.

The position of the object “C” as measured by the two observers “A” and “B” are x C A and x C B as shown in the figure. The observers are represented by their respective frame of reference in the figure.

Position

Here,

x C A = x B A + x C B

Velocity of the point object

We can obtain velocity of the object by differentiating its position with respect to time. As the measurements of position in two references are different, it is expected that velocities in two references are different, because one observer is at rest, whereas other observer is moving with constant velocity.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask