<< Chapter < Page Chapter >> Page >
Pure rolling is governed by Newton's laws as applicable to pure translation and pure rotation under the condition of rolling.

Essentials of pure rolling motion are no different than that of pure translational and rotational motions, except that these two basic forms of motions occur simultaneously. A clear understanding of the two basic motion forms, therefore, is a perquisite for a clear understanding of pure rolling motion (referred simply as rolling also).

There are two distinct framework associated with the study of rolling motion :

  • Uniform rolling
  • Accelerated rolling

Independence of analysis

Rolling, being combination of translation and rotation, involves two “causes”, which might change its velocity. Two causes act to produce “effects” independently, but in tandem to satisfy the condition of rolling (we shall subsequently derive this condition in the module).

A net force causes acceleration of the center of mass of the rigid body. A rolling motion involves rigid body of finite size and, therefore, its translation should always be referred to the center of mass. Further, when we consider the effect of force, we treat translation as if the rigid body were not rotating at all.

Independence of analysis

Forces are analyzed as if rigid body were not rotating at all.
Torques are analyzed as if rigid body were not translating at all.

Similarly, a net torque causes rotational acceleration of the rigid body about its central axis passing through center of mass. When we consider the effect of torque, we treat rotation as if the axis of rotation were not translating at all.

In simple words, the analysis of rolling can be done independently for two motions types as if other motion did not exist. This independence of analysis of motion allows us to apply the familiar laws of motion for analyzing each motion types. We are required only to combine the results to describe rolling motion.

Force and torque

Treatment of force with respect to a rigid body capable of both translation and rotation is different than the case when only one type of motion is involved (i.e. not the combination). In pure translation along a straight line, the rigid body is constrained (or otherwise) not to rotate; similarly in pure rotation about a fixed axis, the rigid body is constrained not to translate.

A force, whose line of action passes through center of mass, is capable to produce only translational acceleration ( a C ). A force, whose line of action does not pass through center of mass, works as “force” to produce translational acceleration ( a C ) and simultaneously as “torque” to produce angular acceleration (α).

Force and torque

A force through the COM only produces linear acceleration.
A force not through the COM produces both linear and angular accelerations.

Since there may be multiple effects (more than one) of a single force, it is always desirable to clearly understand the roles of the forces operating on the rolling body to accurately analyze its motion.

Rolling and newton’s first law

A pure rolling is equivalent to pure translation and pure rotation. It, therefore, follows that a uniform rolling (i.e. rolling with constant velocity) is equivalent to uniform translation (constant linear velocity) and uniform rotation (constant angular velocity).

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask