<< Chapter < Page Chapter >> Page >
F net = ma c = m v 2 r . size 12{F rSub { size 8{ ital "net"} } = ital "ma" rSub { size 8{c} } =m { {v rSup { size 8{2} } } over {r} } } {}

The net external force on mass m size 12{m} {} is gravity, and so we substitute the force of gravity for F net size 12{F rSub { size 8{ ital "net"} } } {} :

G mM r 2 = m v 2 r . size 12{G { { ital "mM"} over {r rSup { size 8{2} } } } =m { {v rSup { size 8{2} } } over {r} } } {}

The mass m size 12{m} {} cancels, yielding

G M r = v 2 . size 12{G { {M} over {r} } =v rSup { size 8{2} } } {}

The fact that m size 12{m} {} cancels out is another aspect of the oft-noted fact that at a given location all masses fall with the same acceleration. Here we see that at a given orbital radius r size 12{r} {} , all masses orbit at the same speed. (This was implied by the result of the preceding worked example.) Now, to get at Kepler's third law, we must get the period T size 12{T} {} into the equation. By definition, period T size 12{T} {} is the time for one complete orbit. Now the average speed v size 12{v} {} is the circumference divided by the period—that is,

v = r T . size 12{v= { {2π`r} over {T} } } {}

Substituting this into the previous equation gives

G M r = 2 r 2 T 2 . size 12{G { { ital "mM"} over {r rSup { size 8{2} } } } =m { {v rSup { size 8{2} } } over {r} } } {}

Solving for T 2 size 12{T rSup { size 8{2} } } {} yields

T 2 = 2 GM r 3 . size 12{T rSup { size 8{2} } = { {4π rSup { size 8{2} } } over { ital "GM"} } r rSup { size 8{3} } } {}

Using subscripts 1 and 2 to denote two different satellites, and taking the ratio of the last equation for satellite 1 to satellite 2 yields

T 1  2 T 2  2 = r 1  3 r 2  3 . size 12{ { {T rSub { size 8{1} } rSup { size 8{2} } } over {T rSub { size 8{2} } rSup { size 8{2} } } } = { {r rSub { size 8{1} } rSup { size 8{3} } } over {r rSub { size 8{2} } rSup { size 8{3} } } } } {}

This is Kepler's third law. Note that Kepler's third law is valid only for comparing satellites of the same parent body, because only then does the mass of the parent body M size 12{M} {} cancel.

Now consider what we get if we solve T 2 = 2 GM r 3 for the ratio r 3 / T 2 size 12{r rSup { size 8{3} } /T rSup { size 8{2} } } {} . We obtain a relationship that can be used to determine the mass M size 12{M} {} of a parent body from the orbits of its satellites:

r 3 T 2 = G 2 M . size 12{ { {r rSup { size 8{3} } } over {T rSup { size 8{2} } } } = { {G} over {4π rSup { size 8{2} } } } M} {}

If r size 12{r} {} and T size 12{T} {} are known for a satellite, then the mass M size 12{M} {} of the parent can be calculated. This principle has been used extensively to find the masses of heavenly bodies that have satellites. Furthermore, the ratio r 3 / T 2 size 12{r rSup { size 8{3} } /T rSup { size 8{2} } } {} should be a constant for all satellites of the same parent body (because r 3 / T 2 = GM / 2 size 12{r rSup { size 8{3} } /T rSup { size 8{2} } = ital "GM"/4π rSup { size 8{2} } } {} ). (See [link] ).

It is clear from [link] that the ratio of r 3 / T 2 size 12{r rSup { size 8{3} } /T rSup { size 8{2} } } {} is constant, at least to the third digit, for all listed satellites of the Sun, and for those of Jupiter. Small variations in that ratio have two causes—uncertainties in the r size 12{r} {} and T size 12{T} {} data, and perturbations of the orbits due to other bodies. Interestingly, those perturbations can be—and have been—used to predict the location of new planets and moons. This is another verification of Newton's universal law of gravitation.

Making connections: general relativity and mercury

Newton's universal law of gravitation is modified by Einstein's general theory of relativity, as we shall see in Particle Physics . Newton's gravity is not seriously in error—it was and still is an extremely good approximation for most situations. Einstein's modification is most noticeable in extremely large gravitational fields, such as near black holes. However, general relativity also explains such phenomena as small but long-known deviations of the orbit of the planet Mercury from classical predictions.

The case for simplicity

The development of the universal law of gravitation by Newton played a pivotal role in the history of ideas. While it is beyond the scope of this text to cover that history in any detail, we note some important points. The definition of planet set in 2006 by the International Astronomical Union (IAU) states that in the solar system, a planet is a celestial body that:

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask