<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Define fundamental particle.
  • Describe quark and antiquark.
  • List the flavors of quarks.
  • Outline the quark composition of hadrons.
  • Determine quantum numbers from quark composition.

The information presented in this section supports the following AP® learning objectives and science practices:

  • 1.A.2.1 : The student is able to construct representations of the differences between a fundamental particle and a system composed of fundamental particles and to relate this to the properties and scales of the systems being investigated.

Quarks have been mentioned at various points in this text as fundamental building blocks and members of the exclusive club of truly elementary particles. Note that an elementary or fundamental particle    has no substructure (it is not made of other particles) and has no finite size other than its wavelength. This does not mean that fundamental particles are stable—some decay, while others do not. Keep in mind that all leptons seem to be fundamental, whereas no hadrons are fundamental. There is strong evidence that quarks are the fundamental building blocks of hadrons as seen in [link] . Quarks are the second group of fundamental particles (leptons are the first). The third and perhaps final group of fundamental particles is the carrier particles for the four basic forces. Leptons, quarks, and carrier particles may be all there is. In this module we will discuss the quark substructure of hadrons and its relationship to forces as well as indicate some remaining questions and problems.

The figure shows four spheres that are labeled proton, neutron, positive pion, and negative pion. The proton sphere contains a blue up quark with spin up, a green down quark with spin down, and a red up quark with spin up. Below the figure are two equations. The upper equation is labeled spin and reads one half plus one half minus one half equals one half, and the lower equation is labeled charge and reads plus two thirds plus two thirds minus one third equals one. The neutron sphere contains a green up quark with spin down, a blue down quark with spin up, and a red down quark with spin up. The corresponding spin equation reads minus one half plus one half plus one half equals one half, and the charge equation reads plus two thirds minus one third minus one third equals zero. The positive pion sphere contains a red up quark with spin up and an anti red anti down quark with spin down. The corresponding spin equation reads plus one half minus one half equals zero, and the charge equation reads plus two thirds plus one third equals plus one. The negative pion sphere contains a green anti up quark with spin up and an anti green down quark with spin down. The corresponding spin equation reads plus one half minus one half equals zero, and the charge equation reads minus two thirds minus one third equals minus one.
All baryons, such as the proton and neutron shown here, are composed of three quarks. All mesons, such as the pions shown here, are composed of a quark-antiquark pair. Arrows represent the spins of the quarks, which, as we shall see, are also colored. The colors are such that they need to add to white for any possible combination of quarks.

Conception of quarks

Quarks were first proposed independently by American physicists Murray Gell-Mann and George Zweig in 1963. Their quaint name was taken by Gell-Mann from a James Joyce novel—Gell-Mann was also largely responsible for the concept and name of strangeness. (Whimsical names are common in particle physics, reflecting the personalities of modern physicists.) Originally, three quark types—or flavors    —were proposed to account for the then-known mesons and baryons. These quark flavors are named up    ( u ), down    ( d ), and strange    ( s ). All quarks have half-integral spin and are thus fermions. All mesons have integral spin while all baryons have half-integral spin. Therefore, mesons should be made up of an even number of quarks while baryons need to be made up of an odd number of quarks. [link] shows the quark substructure of the proton, neutron, and two pions. The most radical proposal by Gell-Mann and Zweig is the fractional charges of quarks, which are ± 2 3 q e size 12{ +- left ( { {2} over {3} } right )q rSub { size 8{e} } } {} and 1 3 q e size 12{ left ( { {1} over {3} } right )q rSub { size 8{e} } } {} , whereas all directly observed particles have charges that are integral multiples of q e size 12{q rSub { size 8{e} } } {} . Note that the fractional value of the quark does not violate the fact that the e is the smallest unit of charge that is observed, because a free quark cannot exist. [link] lists characteristics of the six quark flavors that are now thought to exist. Discoveries made since 1963 have required extra quark flavors, which are divided into three families quite analogous to leptons.

Questions & Answers

what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
what's cornea?
Majak Reply
what are cell
Achol
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask