<< Chapter < Page Chapter >> Page >

Trigonometry

Introduction

Trigonometry is a very important tool for engineers. This reading mentions just a few of the many applications that involve trigonometry to solve engineering problems.

Trigonometry means the study of the triangle. Most often, it refers to finding angles of a triangle when the lengths of the sides are known, or finding the lengths of two sides when the angles and one of the side lengths are known.

As you complete this reading, be sure to pay special attention to the variety of areas in which engineers utilize trigonometry to develop the solutions to problems. Rest assured that there are an untold number of applications of trigonometry in engineering. This reading only introduces you to a few. You will learn many more as you progress through your engineering studies.

Virtually all engineers use trigonometry in their work on a regular basis. Things like the generation of electrical current or a computer use angles in ways that are difficult to see directly, but that rely on the fundamental rules of trigonometry to work properly. Any time angles appear in a problem, the use of trigonometry usually will not be far behind.

An excellent working knowledge of trigonometry is essential for practicing engineers. Many problems can be easily solved by applying the fundamental definitions of trigonometric functions. Figure 1 depicts a right triangle for which we will express the various trigonometric functions and relationships that are important to engineers.

Triangle for definition of trigonometric functions.

Some of the most widely used trigonometric functions follow

sin ( θ ) = opposite side hypotenuse = B C size 12{"sin" \( θ \) = { { ital "opposite"` ital "side"} over { ital "hypotenuse"} } = { {B} over {C} } } {}
cos ( θ ) = adjacent side hypotenuse = A C size 12{"cos" \( θ \) = { { ital "adjacent"` ital "side"} over { ital "hypotenuse"} } = { {A} over {C} } } {}
tan ( θ ) = opposite side adjacent side = B A size 12{"tan" \( θ \) = { { ital "opposite"` ital "side"} over { ital "adjacent"` ital "side"} } = { {B} over {A} } } {}

The Pythagorean Theorem often plays a key role in applications involving trigonometry in engineering. It states that the square of the hypotenuse is equal to the sum of the squares of the adjacent side and of the opposite side. This theorem can be stated mathematically by means of the equation that follows. Here we make use of the symbols (A, B, and C) that designate associated lengths.

A 2 + B 2 = C 2 size 12{A rSup { size 8{2} } +B rSup { size 8{2} } =C rSup { size 8{2} } } {}

In the remainder of this module, we will make use of these formulas in addressing various applications.

Flight path of an aircraft

The following is representative of the type of problem one is likely to encounter in the introductory Physics course as well as in courses in Mechanical Engineering. This represents an example of how trigonometry can be applied to determine the motion of an aircraft.

Assume that an airplane climbs at a constant angle of 3 0 from its departure point situated at sea level. It continues to climb at this angle until it reaches its cruise altitude. Suppose that its cruise altitude is 31,680 ft above sea level.

With the information stated above, we may sketch an illustration of the situation

Depiction of aircraft motion.

Question 1: What is the distance traveled by the plane from its departure point to its cruise altitude?

The distance traveled by the plane is equal to the length of the hypotenuse of the right triangle depicted in Figure 2. Let us denote the distance measured in feet that the plane travels by the symbol C . We may apply the definition of the sine function to enable us to solve for the symbol C as follows.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Contemporary math applications. OpenStax CNX. Dec 15, 2014 Download for free at http://legacy.cnx.org/content/col11559/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Contemporary math applications' conversation and receive update notifications?

Ask