<< Chapter < Page Chapter >> Page >
Се дефинира вектор во просторен координатен систем и операции со векторите. Definition of a vector and operations with vectors

Правоаголен просторен координатен систем

Три бројни оски кои се нормални меѓу себе образуваат правоаголен тродимензионален координатен систем и определуваат тродимензи­онален простор кој накратко се нарекува простор.

Слика 1.1. Просторен координатен систем
Едната оска се нарекува x -оска или апсциса , втората е y -оска или ордината и третата е z -оска или апликата . Точката O која е пресек на оските се нарекува координатен почеток. Секоја точка M во троди­мен­зио­налниот про­стор е наполно определена со подредената тројка реални броеви x , y , z кои се нарекуваат нејзини коорди­нати, односно М ( x , y , z ).

Секој пар координатни оски определува рамнина нарече­на координатна рамнина .

Во просторниот координатен систем се определуваат 3 координатни рамнини:

xOy координатна рамнина (определена со x -оската и y -оската);

xOz координатна рамнина (определена со x -оската и z -оската);

yOz координатна рамнина (определена со y -оската и z -оската).

Секоја точка M ( x , y , z ) која лежи на некоја од координатните рамнини или оски има координати:

област координати
xOy рамнина ( x , y , 0)
xOz рамнина ( x , 0, z )
y О z рамнина (0, y , z )
x - оска ( x ,0, 0)
y - оска (0, y , 0)
z - оска (0, 0, z )

Со координатните рамнини тродимензионалниот простор се дели на 8 делови наречени октанти . Знаците на координатите на произволна точка по октанти се:

О ктант З наци на координати
I x > 0, y > 0, z > 0
II x < 0, y > 0, z > 0
III x < 0, y < 0, z > 0
IV x > 0, y < 0, z > 0
V x > 0, y > 0, z < 0
VI x < 0, y > 0, z < 0
VII x <0, y < 0, z < 0
VIII x > 0, y < 0, z < 0

Вектори

Постојат величини кои се определуваат само со бројна вредност, додека други, освен со бројна вредност се определуваат уште и со правец и насока.

Дефиниција . Величините кои се определуваат само со бројна вредност се нарекуваат скалари .

Дефиниција . Величините кои се определуваат со бројна вредност, правец и насока се нарекуваат вектори .

Скаларни величини или накратко скалари се на пр. температурата, плоштината, должината и др. и тие се наполно определени со нивната бројна вредност. Затоа доволно е да се каже дека температурата на воздухот е 20 0 C, плоштината на некоја геометриска слика е 20 cm 2 , должината на отсечка е 5 m и тн.

Брзината е векторска величина и како таква е определена со бројна вредност, правец и насока. Затоа брзината со која дува ветерот се определува со бројната вредност на пр. нека таа е 5 m/s, во правец север-југ и во насока од север кон југ.

Слика 1.2. Вектори
Векторот геометриски се претста­вува со ориентирана отсечка т.е. дел од права ограничена со две точки од кои едната е почетна а другата е крајна. Векторот меѓу точките А и B , од кои А е почетна а B крајна точка се означува со AB size 12{ { ital "AB"} cSup { size 8{ rightarrow } } } {} (Сл. 1.2.). Освен ова означување, за векторите се користат и малите букви одозгора означени со стрелка на пр. a , b . . . size 12{ {a} cSup { size 8{ rightarrow } } ,` {b} cSup { size 8{ rightarrow } } "." "." "." } {} или пак со мали задебелени букви на пр. а , b .

Според дефиницијата за вектор, секој вектор се дефинира со:

- интензитет (должина или модул) на вектор е растојанието помеѓу почетната и крајната точка на векторот и се означува со

AB , AB ¯ , a size 12{ \lline { ital "AB"} cSup { size 8{ rightarrow } } \rline ,`~ {overline { ital "AB"}} ,`~ \lline {a} cSup { size 8{ rightarrow } } \lline } {} ;

- правец на векторот е правецот кој го определува правата на која лежи векторот и правата се нарекува носач на векторот;

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Векторска алгебра. OpenStax CNX. Mar 11, 2009 Download for free at http://cnx.org/content/col10672/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Векторска алгебра' conversation and receive update notifications?

Ask