<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Explain the differences in animal body plans that support basic animal classification
  • Compare and contrast the embryonic development of protostomes and deuterostomes

Scientists have developed a classification scheme that categorizes all members of the animal kingdom, although there are exceptions to most “rules” governing animal classification ( [link] ). Animals are primarily classified according to morphological and developmental characteristics, such as a body plan. One of the most prominent features of the body plan of true animals is that they are morphologically symmetrical. This means that their distribution of body parts is balanced along an axis. Additional characteristics include the number of tissue layers formed during development, the presence or absence of an internal body cavity, and other features of embryological development, such as the origin of the mouth and anus.

Art connection

The phylogenetic tree of metazoans, or animals, branches into parazoans with no tissues and eumetazoans with specialized tissues. Parazoans include Porifera, or sponges. Eumetazoans branch into Radiata, diploblastic animals with radial symmetry, and Bilateria, triploblastic animals with bilateral symmetry. Radiata includes cnidarians and ctenophores (comb jellies). Bilateria branches into Acoela, which have no body cavity, and Protostomia and Deuterostomia, which possess a body cavity. Deuterostomes include chordates and echinoderms. Protostomia branches into Lophotrochozoa and Ecdysozoa. Ecdysozoa includes arthropods and nematodes, or roundworms. Lophotrochozoa includes Mollusca, Annelida, Brachopoda, Ectoprocta, Rotifera, and Platyhelminthes.
The phylogenetic tree of animals is based on morphological, fossil, and genetic evidence.

Which of the following statements is false?

  1. Eumetazoans have specialized tissues and parazoans don’t.
  2. Lophotrochozoa and Ecdysozoa are both Bilataria.
  3. Acoela and Cnidaria both possess radial symmetry.
  4. Arthropods are more closely related to nematodes than they are to annelids.

Animal characterization based on body symmetry

At a very basic level of classification, true animals can be largely divided into three groups based on the type of symmetry of their body plan: radially symmetrical, bilaterally symmetrical, and asymmetrical. Asymmetry is a unique feature of Parazoa ( [link] a ). Only a few animal groups display radial symmetry. All types of symmetry are well suited to meet the unique demands of a particular animal’s lifestyle.

Radial symmetry is the arrangement of body parts around a central axis, as is seen in a drinking glass or pie. It results in animals having top and bottom surfaces but no left and right sides, or front or back. The two halves of a radially symmetrical animal may be described as the side with a mouth or “oral side,” and the side without a mouth (the “aboral side”). This form of symmetry marks the body plans of animals in the phyla Ctenophora and Cnidaria, including jellyfish and adult sea anemones ( [link] bc ). Radial symmetry equips these sea creatures (which may be sedentary or only capable of slow movement or floating) to experience the environment equally from all directions.

Part a shows several sponges, which form irregular, bumpy blobs on the sea floor. Part b shows a jellyfish with long, slender tentacles, radiating from a flexible, disc-shaped body. Part c shows an anemone sitting on the sea floor with thick tentacles, radiating up from a cup-shaped body. Part d shows a black butterfly with two symmetrical wings.
The (a) sponge is asymmetrical. The (b) jellyfish and (c) anemone are radially symmetrical, and the (d) butterfly is bilaterally symmetrical. (credit a: modification of work by Andrew Turner; credit b: modification of work by Robert Freiburger; credit c: modification of work by Samuel Chow; credit d: modification of work by Cory Zanker)

Bilateral symmetry involves the division of the animal through a sagittal plane, resulting in two mirror image, right and left halves, such as those of a butterfly ( [link] d ), crab, or human body. Animals with bilateral symmetry have a “head” and “tail” (anterior vs. posterior), front and back (dorsal vs. ventral), and right and left sides ( [link] ). All true animals except those with radial symmetry are bilaterally symmetrical. The evolution of bilateral symmetry that allowed for the formation of anterior and posterior (head and tail) ends promoted a phenomenon called cephalization, which refers to the collection of an organized nervous system at the animal’s anterior end. In contrast to radial symmetry, which is best suited for stationary or limited-motion lifestyles, bilateral symmetry allows for streamlined and directional motion. In evolutionary terms, this simple form of symmetry promoted active mobility and increased sophistication of resource-seeking and predator-prey relationships.

Questions & Answers

material that allows electric current to pass through
Deng Reply
material which don't allow electric current is called
Deng
insulators
Covenant
how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, 101-nya-05 - general biology i. OpenStax CNX. Jul 22, 2015 Download for free at http://legacy.cnx.org/content/col11849/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the '101-nya-05 - general biology i' conversation and receive update notifications?

Ask