<< Chapter < Page Chapter >> Page >
The illustration shows a woman’s body dissected into planes. The coronal plane separates the front from the back. The front of the body is the ventral side, and the back of the body is the dorsal side. The upper body is defined as cranial, and the lower body is defined as caudal.  The sagittal plane dissects the body from side to side. The medial line goes through the center of the body. The areas to the left and right of the medial line are defined as lateral. Parts of the body close to the medial line are proximal, and those further away are distal.
The bilaterally symmetrical human body can be divided into planes.

Animals in the phylum Echinodermata (such as sea stars, sand dollars, and sea urchins) display radial symmetry as adults, but their larval stages exhibit bilateral symmetry. This is termed secondary radial symmetry. They are believed to have evolved from bilaterally symmetrical animals; thus, they are classified as bilaterally symmetrical.

Watch this video to see a quick sketch of the different types of body symmetry.

Animal characterization based on features of embryological development

Most animal species undergo a separation of tissues into germ layers during embryonic development. Recall that these germ layers are formed during gastrulation, and that they are predetermined to develop into the animal’s specialized tissues and organs. Animals develop either two or three embryonic germs layers ( [link] ). The animals that display radial symmetry develop two germ layers, an inner layer (endoderm) and an outer layer (ectoderm). These animals are called diploblasts . Diploblasts have a non-living layer between the endoderm and ectoderm. More complex animals (those with bilateral symmetry) develop three tissue layers: an inner layer (endoderm), an outer layer (ectoderm), and a middle layer (mesoderm). Animals with three tissue layers are called triploblasts .

Art connection

The left illustration shows the two embryonic germ layers of a diploblast. The inner layer is the endoderm, and the outer layer is the ectoderm. Sandwiched between the endoderm and the ectoderm is a non-living layer. Right illustration shows the three embryonic germ layers of a triploblast. Like the diploblast, the triploblast has an inner endoderm and an outer ectoderm. Sandwiched between these two layers is a living mesoderm.
During embryogenesis, diploblasts develop two embryonic germ layers: an ectoderm and an endoderm. Triploblasts develop a third layer—the mesoderm—between the endoderm and ectoderm.

Which of the following statements about diploblasts and triploblasts is false?

  1. Animals that display radial symmetry are diploblasts.
  2. Animals that display bilateral symmetry are triploblasts.
  3. The endoderm gives rise to the lining of the digestive tract and the respiratory tract.
  4. The mesoderm gives rise to the central nervous system.

Each of the three germ layers is programmed to give rise to particular body tissues and organs. The endoderm gives rise to the lining of the digestive tract (including the stomach, intestines, liver, and pancreas), as well as to the lining of the trachea, bronchi, and lungs of the respiratory tract, along with a few other structures. The ectoderm develops into the outer epithelial covering of the body surface, the central nervous system, and a few other structures. The mesoderm is the third germ layer; it forms between the endoderm and ectoderm in triploblasts. This germ layer gives rise to all muscle tissues (including the cardiac tissues and muscles of the intestines), connective tissues such as the skeleton and blood cells, and most other visceral organs such as the kidneys and the spleen.

Presence or absence of a coelom

Further subdivision of animals with three germ layers (triploblasts) results in the separation of animals that may develop an internal body cavity derived from mesoderm, called a coelom    , and those that do not. This epithelial cell-lined coelomic cavity represents a space, usually filled with fluid, which lies between the visceral organs and the body wall. It houses many organs such as the digestive system, kidneys, reproductive organs, and heart, and contains the circulatory system. In some animals, such as mammals, the part of the coelom called the pleural cavity provides space for the lungs to expand during breathing. The evolution of the coelom is associated with many functional advantages. Primarily, the coelom provides cushioning and shock absorption for the major organ systems. Organs housed within the coelom can grow and move freely, which promotes optimal organ development and placement. The coelom also provides space for the diffusion of gases and nutrients, as well as body flexibility, promoting improved animal motility.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, 101-nya-05 - general biology i. OpenStax CNX. Jul 22, 2015 Download for free at http://legacy.cnx.org/content/col11849/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the '101-nya-05 - general biology i' conversation and receive update notifications?

Ask