<< Chapter < Page Chapter >> Page >
  • Define entropy and calculate the increase of entropy in a system with reversible and irreversible processes.
  • Explain the expected fate of the universe in entropic terms.
  • Calculate the increasing disorder of a system.
Photograph shows a glass of a beverage with ice cubes and a straw, placed on a paper napkin on the table. There is a piece of sliced lemon at the edge of the glass. There is condensate around the outside surface of the glass, giving the appearance that the ice is melting.
The ice in this drink is slowly melting. Eventually the liquid will reach thermal equilibrium, as predicted by the second law of thermodynamics. (credit: Jon Sullivan, PDPhoto.org)

There is yet another way of expressing the second law of thermodynamics. This version relates to a concept called entropy    . By examining it, we shall see that the directions associated with the second law—heat transfer from hot to cold, for example—are related to the tendency in nature for systems to become disordered and for less energy to be available for use as work. The entropy of a system can in fact be shown to be a measure of its disorder and of the unavailability of energy to do work.

Making connections: entropy, energy, and work

Recall that the simple definition of energy is the ability to do work. Entropy is a measure of how much energy is not available to do work. Although all forms of energy are interconvertible, and all can be used to do work, it is not always possible, even in principle, to convert the entire available energy into work. That unavailable energy is of interest in thermodynamics, because the field of thermodynamics arose from efforts to convert heat to work.

We can see how entropy is defined by recalling our discussion of the Carnot engine. We noted that for a Carnot cycle, and hence for any reversible processes, Q c / Q h = T c / T h size 12{Q rSub { size 8{c} } /Q rSub { size 8{h} } =T rSub { size 8{c} } /T rSub { size 8{h} } } {} . Rearranging terms yields

Q c T c = Q h T h size 12{ { {Q rSub { size 8{c} } } over {T rSub { size 8{c} } } } = { {Q rSub { size 8{h} } } over {T rSub { size 8{h} } } } } {}

for any reversible process. Q c size 12{Q rSub { size 8{c} } } {} and Q h size 12{Q rSub { size 8{h} } } {} are absolute values of the heat transfer at temperatures T c size 12{T rSub { size 8{c} } } {} and T h size 12{T rSub { size 8{h} } } {} , respectively. This ratio of Q / T size 12{Q/T} {} is defined to be the change in entropy     Δ S size 12{ΔS} {} for a reversible process,

Δ S = Q T rev , size 12{DS= left ( { {Q} over {T} } right ) rSub { size 8{"rev"} } } {}

where Q size 12{Q} {} is the heat transfer, which is positive for heat transfer into and negative for heat transfer out of, and T size 12{T} {} is the absolute temperature at which the reversible process takes place. The SI unit for entropy is joules per kelvin (J/K). If temperature changes during the process, then it is usually a good approximation (for small changes in temperature) to take T size 12{T} {} to be the average temperature, avoiding the need to use integral calculus to find Δ S size 12{ΔS} {} .

The definition of Δ S size 12{ΔS} {} is strictly valid only for reversible processes, such as used in a Carnot engine. However, we can find Δ S size 12{ΔS} {} precisely even for real, irreversible processes. The reason is that the entropy S size 12{S} {} of a system, like internal energy U size 12{U} {} , depends only on the state of the system and not how it reached that condition. Entropy is a property of state. Thus the change in entropy Δ S size 12{ΔS} {} of a system between state 1 and state 2 is the same no matter how the change occurs. We just need to find or imagine a reversible process that takes us from state 1 to state 2 and calculate Δ S size 12{ΔS} {} for that process. That will be the change in entropy for any process going from state 1 to state 2. (See [link] .)

The diagram shows a schematic representation of a system that goes from state one with entropy S sub one to state two with entropy S sub two. The two states are shown as two circles drawn a distance apart. Two arrows represent two different processes to take the system from state one to state two. A straight arrow pointing from state one to state two shows a reversible process. The change in entropy for this process is given by delta S equals Q divided by T. The second process is marked as a curving arrow from state one to state two, showing an irreversible process. The change in entropy for this process is given by delta S sub irreversible equals delta S sub reversible equals S sub two minus S sub one.
When a system goes from state 1 to state 2, its entropy changes by the same amount Δ S size 12{ΔS} {} , whether a hypothetical reversible path is followed or a real irreversible path is taken.

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics ii. OpenStax CNX. Nov 29, 2012 Download for free at http://legacy.cnx.org/content/col11458/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics ii' conversation and receive update notifications?

Ask