<< Chapter < Page Chapter >> Page >
  • Explain the human body’s consumption of energy when at rest vs. when engaged in activities that do useful work.
  • Calculate the conversion of chemical energy in food into useful work.

Energy conversion in humans

Our own bodies, like all living organisms, are energy conversion machines. Conservation of energy implies that the chemical energy stored in food is converted into work, thermal energy, and/or stored as chemical energy in fatty tissue. (See [link] .) The fraction going into each form depends both on how much we eat and on our level of physical activity. If we eat more than is needed to do work and stay warm, the remainder goes into body fat.

A schematic diagram of energy consumed by humans and converted to various other forms is shown. Food energy is converted into work, thermal energy, and stored fat depicted by an arrow branching out of food energy and ending at these three forms. Stored fat plus thermal energy is equal to the final other energy, labeled  O E sub f, and nonconservative work is shown by W sub n c, which is negative, so the initial other energy, labeled O E sub i, plus W sub n c is equal to O E sub f .
Energy consumed by humans is converted to work, thermal energy, and stored fat. By far the largest fraction goes to thermal energy, although the fraction varies depending on the type of physical activity.

Power consumed at rest

The rate at which the body uses food energy to sustain life and to do different activities is called the metabolic rate    . The total energy conversion rate of a person at rest is called the basal metabolic rate    (BMR) and is divided among various systems in the body, as shown in [link] . The largest fraction goes to the liver and spleen, with the brain coming next. Of course, during vigorous exercise, the energy consumption of the skeletal muscles and heart increase markedly. About 75% of the calories burned in a day go into these basic functions. The BMR is a function of age, gender, total body weight, and amount of muscle mass (which burns more calories than body fat). Athletes have a greater BMR due to this last factor.

Basal metabolic rates (bmr)
Organ Power consumed at rest (W) Oxygen consumption (mL/min) Percent of BMR
Liver&spleen 23 67 27
Brain 16 47 19
Skeletal muscle 15 45 18
Kidney 9 26 10
Heart 6 17 7
Other 16 48 19
Totals 85 W 250 mL/min 100%

Energy consumption is directly proportional to oxygen consumption because the digestive process is basically one of oxidizing food. We can measure the energy people use during various activities by measuring their oxygen use. (See [link] .) Approximately 20 kJ of energy are produced for each liter of oxygen consumed, independent of the type of food. [link] shows energy and oxygen consumption rates (power expended) for a variety of activities.

Power of doing useful work

Work done by a person is sometimes called useful work    , which is work done on the outside world , such as lifting weights. Useful work requires a force exerted through a distance on the outside world, and so it excludes internal work, such as that done by the heart when pumping blood. Useful work does include that done in climbing stairs or accelerating to a full run, because these are accomplished by exerting forces on the outside world. Forces exerted by the body are nonconservative, so that they can change the mechanical energy ( KE + PE size 12{"KE "+" PE"} {} ) of the system worked upon, and this is often the goal. A baseball player throwing a ball, for example, increases both the ball’s kinetic and potential energy.

If a person needs more energy than they consume, such as when doing vigorous work, the body must draw upon the chemical energy stored in fat. So exercise can be helpful in losing fat. However, the amount of exercise needed to produce a loss in fat, or to burn off extra calories consumed that day, can be large, as [link] illustrates.

Questions & Answers

What is an atom
Mabel Reply
what are the connective tissue
Faith Reply
which part of the brain that controls human body
Mozanto Reply
describe the stage of eghopoisis
alupe Reply
what is a blood vessels
Sani Reply
what is plasma and is component
Fad Reply
what is the anterior
Tito Reply
Means front part of the body
Ibrahim
what is anatomy
Ruth Reply
describe the stage of ehopoisis
alupe
study of structure
Sakinat
To better understand how the different part of the body works. To understand the physiology of the various structures in the body. To differentiate the systems of the human body .
Roseann Reply
what is hypogelersomia
aliyu Reply
what are the parts of the female reproductive system?
Orji Reply
what is anatomy
Divinefavour Reply
what are the six types of synovial joints and their ligaments
Darlington Reply
draw the six types of synovial joint and their ligaments
Darlington
System of human beings
Katumi Reply
System in humans body
Katumi
Diagram of animals and plants cell
Favour Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics -- hlca 1104. OpenStax CNX. May 18, 2013 Download for free at http://legacy.cnx.org/content/col11525/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics -- hlca 1104' conversation and receive update notifications?

Ask