<< Chapter < Page Chapter >> Page >

Calculating weight loss from exercising

If a person who normally requires an average of 12,000 kJ (3000 kcal) of food energy per day consumes 13,000 kJ per day, he will steadily gain weight. How much bicycling per day is required to work off this extra 1000 kJ?

Solution

[link] states that 400 W are used when cycling at a moderate speed. The time required to work off 1000 kJ at this rate is then

Time = energy energy time = 1000 kJ 400 W = 2500 s = 42 min. size 12{"Time"= { {"energy"} over { left ( { {"energy"} over {"time"} } right )} } = { {"1000"" kJ"} over {"400 W"} } ="2500"" s"="42 min" "." } {}

Discussion

If this person uses more energy than he or she consumes, the person’s body will obtain the needed energy by metabolizing body fat. If the person uses 13,000 kJ but consumes only 12,000 kJ, then the amount of fat loss will be

Fat loss = ( 1000 kJ ) 1.0 g fat 39 kJ = 26 g, size 12{"Fat loss"= \( "1000"" kJ" \) left ( { {1 "." "0 g fat"} over {"39 kJ"} } right )="26"" g,"} {}

assuming the energy content of fat to be 39 kJ/g.

A person is measuring the amount of oxygen in blood and metabolic rate using a pulse oxymeter. The pulse oxymeter is strapped to the person’s wrist, and the index finger is inside the clip.
A pulse oxymeter is an apparatus that measures the amount of oxygen in blood. Oxymeters can be used to determine a person’s metabolic rate, which is the rate at which food energy is converted to another form. Such measurements can indicate the level of athletic conditioning as well as certain medical problems. (credit: UusiAjaja, Wikimedia Commons)
Energy and oxygen consumption rates for an average 76-kg male (power)
Activity Energy consumption in watts Oxygen consumption in liters O 2 /min
Sleeping 83 0.24
Sitting at rest 120 0.34
Standing relaxed 125 0.36
Sitting in class 210 0.60
Walking (5 km/h) 280 0.80
Cycling (13–18 km/h) 400 1.14
Shivering 425 1.21
Playing tennis 440 1.26
Swimming breaststroke 475 1.36
Ice skating (14.5 km/h) 545 1.56
Climbing stairs (116/min) 685 1.96
Cycling (21 km/h) 700 2.00
Running cross-country 740 2.12
Playing basketball 800 2.28
Cycling, professional racer 1855 5.30
Sprinting 2415 6.90

All bodily functions, from thinking to lifting weights, require energy. (See [link] .) The many small muscle actions accompanying all quiet activity, from sleeping to head scratching, ultimately become thermal energy, as do less visible muscle actions by the heart, lungs, and digestive tract. Shivering, in fact, is an involuntary response to low body temperature that pits muscles against one another to produce thermal energy in the body (and do no work). The kidneys and liver consume a surprising amount of energy, but the biggest surprise of all it that a full 25% of all energy consumed by the body is used to maintain electrical potentials in all living cells. (Nerve cells use this electrical potential in nerve impulses.) This bioelectrical energy ultimately becomes mostly thermal energy, but some is utilized to power chemical processes such as in the kidneys and liver, and in fat production.

An f M R I scan of a human head with energy consumption in the vision center shown by a bright spot. This brightness indicates the energy consumption.
This fMRI scan shows an increased level of energy consumption in the vision center of the brain. Here, the patient was being asked to recognize faces. (credit: NIH via Wikimedia Commons)

Section summary

  • The human body converts energy stored in food into work, thermal energy, and/or chemical energy that is stored in fatty tissue.
  • The rate at which the body uses food energy to sustain life and to do different activities is called the metabolic rate, and the corresponding rate when at rest is called the basal metabolic rate (BMR)
  • The energy included in the basal metabolic rate is divided among various systems in the body, with the largest fraction going to the liver and spleen, and the brain coming next.
  • About 75% of food calories are used to sustain basic body functions included in the basal metabolic rate.
  • The energy consumption of people during various activities can be determined by measuring their oxygen use, because the digestive process is basically one of oxidizing food.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics -- hlca 1104. OpenStax CNX. May 18, 2013 Download for free at http://legacy.cnx.org/content/col11525/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics -- hlca 1104' conversation and receive update notifications?

Ask