<< Chapter < Page Chapter >> Page >
The figure shows two images of Jesus. Left image is very faint and hardly visible but the right image shows a much clearer picture.
Part of the Shroud of Turin, which shows a remarkable negative imprint likeness of Jesus complete with evidence of crucifixion wounds. The shroud first surfaced in the 14th century and was only recently carbon-14 dated. It has not been determined how the image was placed on the material. (credit: Butko, Wikimedia Commons)

How old is the shroud of turin?

Calculate the age of the Shroud of Turin given that the amount of 14 C size 12{"" lSup { size 8{"14"} } C} {} found in it is 92% of that in living tissue.

Strategy

Knowing that 92% of the 14 C remains means that N / N 0 = 0 . 92 size 12{N/N rSub { size 8{0} } =0 "." "92"} {} . Therefore, the equation N = N 0 e λt size 12{N=N rSub { size 8{0} } e rSup { size 8{ - λt} } } {} can be used to find λt size 12{λt} {} . We also know that the half-life of 14 C is 5730 y, and so once λt size 12{λt} {} is known, we can use the equation λ = 0 . 693 t 1 / 2 size 12{λ= { {0 "." "693"} over {t rSub { size 8{1/2} } } } } {} to find λ size 12{λ} {} and then find t size 12{t} {} as requested. Here, we postulate that the decrease in 14 C is solely due to nuclear decay.

Solution

Solving the equation N = N 0 e λt size 12{N=N rSub { size 8{0} } e rSup { size 8{ - λt} } } {} for N / N 0 size 12{N/N rSub { size 8{0} } } {} gives

N N 0 = e λt . size 12{ { {N} over {N rSub { size 8{0} } } } =e rSup { size 8{-λt} } } {}

Thus,

0 . 92 = e λt . size 12{0 "." "92"=e rSup { size 8{ - λt} } } {}

Taking the natural logarithm of both sides of the equation yields

ln 0 . 92 = –λt size 12{"ln "0 "." "92""=-"λt} {}

so that

0 . 0834 = λt . size 12{ - 0 "." "0834"= - λt} {}

Rearranging to isolate t size 12{t} {} gives

t = 0 . 0834 λ . size 12{t= { {0 "." "0834"} over {λ} } } {}

Now, the equation λ = 0 . 693 t 1 / 2 size 12{λ= { {0 "." "693"} over {t rSub { size 8{1/2} } } } } {} can be used to find λ size 12{λ} {} for 14 C size 12{"" lSup { size 8{"14"} } C} {} . Solving for λ size 12{λ} {} and substituting the known half-life gives

λ = 0 . 693 t 1 / 2 = 0 . 693 5730 y . size 12{λ= { {0 "." "693"} over {t rSub { size 8{1/2} } } } = { {0 "." "693"} over {"5730"" y"} } } {}

We enter this value into the previous equation to find t size 12{t} {} :

t = 0 . 0834 0 . 693 5730 y = 690 y. size 12{t= { {0 "." "0834"} over { { {0 "." "693"} over {"5730"" y"} } } } ="690"" y"} {}

Discussion

This dates the material in the shroud to 1988–690 = a.d. 1300. Our calculation is only accurate to two digits, so that the year is rounded to 1300. The values obtained at the three independent laboratories gave a weighted average date of a.d. 1320 ± 60 size 12{"1320" +- "60"} {} . The uncertainty is typical of carbon-14 dating and is due to the small amount of 14 C size 12{"" lSup { size 8{"14"} } C} {} in living tissues, the amount of material available, and experimental uncertainties (reduced by having three independent measurements). It is meaningful that the date of the shroud is consistent with the first record of its existence and inconsistent with the period in which Jesus lived.

There are other forms of radioactive dating. Rocks, for example, can sometimes be dated based on the decay of 238 U . The decay series for 238 U ends with 206 Pb , so that the ratio of these nuclides in a rock is an indication of how long it has been since the rock solidified. The original composition of the rock, such as the absence of lead, must be known with some confidence. However, as with carbon-14 dating, the technique can be verified by a consistent body of knowledge. Since 238 U has a half-life of 4 . 5 × 10 9 y, it is useful for dating only very old materials, showing, for example, that the oldest rocks on Earth solidified about 3 . 5 × 10 9 size 12{3 "." 5 times "10" rSup { size 8{9} } } {} years ago.

Activity, the rate of decay

What do we mean when we say a source is highly radioactive? Generally, this means the number of decays per unit time is very high. We define activity     R size 12{R} {} to be the rate of decay    expressed in decays per unit time. In equation form, this is

R = Δ N Δ t size 12{R= { {ΔN} over {Δt} } } {}

where Δ N size 12{ΔN} {} is the number of decays that occur in time Δ t size 12{Δt} {} . The SI unit for activity is one decay per second and is given the name becquerel    (Bq) in honor of the discoverer of radioactivity. That is,

1 Bq = 1 decay/s. size 12{1" Bq"="1 decay/s"} {}

Activity R size 12{R} {} is often expressed in other units, such as decays per minute or decays per year. One of the most common units for activity is the curie    (Ci), defined to be the activity of 1 g of 226 Ra , in honor of Marie Curie’s work with radium. The definition of curie is

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Basic physics for medical imaging. OpenStax CNX. Feb 17, 2014 Download for free at http://legacy.cnx.org/content/col11630/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Basic physics for medical imaging' conversation and receive update notifications?

Ask