<< Chapter < Page Chapter >> Page >
Various approximations for distributions are studied, especially those involving the Binomial, Poisson, gamma, and Gaussian (normal) distributions. m-procedures are used to make comparisons. A simple approximation to a continuous random variable is obtained by subdividing an interval which includes the range (the set of possible values) into small enough subintervals that the density is approximately constant over each subinterval. A point in each subinterval is selected and is assigned the probability mass in its subinterval. The combination of the selected points and the corresponding probabilities describes the distribution of an approximating simple random variable. Calculations based on this distribution approximate corresponding calculations on the continuous distribution.

Binomial, poisson, gamma, and gaussian distributions

The Poisson approximation to the binomial distribution

The following approximation is a classical one. We wish to show that for small p and sufficiently large n

P ( X = k ) = C ( n , k ) p k ( 1 - p ) n - k e - n p n p k !

Suppose p = μ / n with n large and μ / n < 1 . Then,

P ( X = k ) = C ( n , k ) ( μ / n ) k ( 1 - μ / n ) n - k = n ( n - 1 ) ( n - k + 1 ) n k 1 - μ n - k 1 - μ n n μ k k !

The first factor in the last expression is the ratio of polynomials in n of the same degree k , which must approach one as n becomes large. The second factor approaches one as n becomes large. According to a well known property of the exponential

1 - μ n n e - μ as n

The result is that for large n , P ( X = k ) e - μ μ k k ! , where μ = n p .

The Poisson and gamma distributions

Suppose Y Poisson ( λ t ) . Now X gamma ( α , λ ) iff

P ( X t ) = λ α Γ ( α ) 0 t x α - 1 e - λ x d x = 1 Γ ( α ) 0 t ( λ x ) α - 1 e - λ x d ( λ x )
= 1 Γ ( α ) 0 λ t u α - 1 e - u d u

A well known definite integral, obtained by integration by parts, is

a t n - 1 e - t d t = Γ ( n ) e - a k = 0 n - 1 a k k ! with Γ ( n ) = ( n - 1 ) !

Noting that 1 = e - a e a = e - a k = 0 a k k ! we find after some simple algebra that

1 Γ ( n ) 0 a t n - 1 e - t d t = e - a k = n a k k !

For a = λ t and α = n , we have the following equality iff X gamma ( α , λ ) .

P ( X t ) = 1 Γ ( n ) 0 λ t u n - 1 d - u d u = e - λ t k = n ( λ t ) k k !

Now

P ( Y n ) = e - λ t k = n ( λ t ) k k ! iff Y Poisson ( λ t )

The gaussian (normal) approximation

The central limit theorem, referred to in the discussion of the gaussian or normal distribution above, suggests that the binomial and Poisson distributions should be approximated by the gaussian.The number of successes in n trials has the binomial ( n , p ) distribution. This random variable may be expressed

X = i = 1 n I E i where the I E i constitute an independent class

Since the mean value of X is n p and the variance is n p q , the distribution should be approximately N ( n p , n p q ) .

A graph of the Gaussian approximation to the binomial: n=300, p=0.1. The x-axis represents the values of k ranging from 10-50, while the y-axis shows range of density from 0.01-0.08. The distribution plotted rises and falls at an equal rate with its peak at (30,0.075). The distribution occurs over a series of vertical bars with their heights roughly approximate to the corresponding position of the distribution. 'The actual distribution looks like a bell curve'. A graph of the Gaussian approximation to the binomial: n=300, p=0.1. The x-axis represents the values of k ranging from 10-50, while the y-axis shows range of density from 0.01-0.08. The distribution plotted rises and falls at an equal rate with its peak at (30,0.075). The distribution occurs over a series of vertical bars with their heights roughly approximate to the corresponding position of the distribution. 'The actual distribution looks like a bell curve'.
Gaussian approximation to the binomial.

Use of the generating function shows that the sum of independent Poisson random variables is Poisson. Now if X Poisson ( μ ) , then X may be considered the sum of n independent random variables, each Poisson ( μ / n ) . Since the mean value and the variance are both μ , it is reasonable to suppose that suppose that X is approximately N ( μ , μ ) .

It is generally best to compare distribution functions. Since the binomial and Poisson distributions are integer-valued, it turns out that the best gaussian approximaton is obtainedby making a “continuity correction.” To get an approximation to a density for an integer-valued random variable, the probability at t = k is represented by a rectangle of height p k and unit width, with k as the midpoint. Figure 1 shows a plot of the “density” and the corresponding gaussian density for n = 300 , p = 0 . 1 . It is apparent that the gaussian density is offset by approximately 1/2. To approximate the probability X k , take the area under the curve from k + 1 / 2 ; this is called the continuity correction .

Questions & Answers

what does the ideal gas law states
Joy Reply
Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Applied probability. OpenStax CNX. Aug 31, 2009 Download for free at http://cnx.org/content/col10708/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Applied probability' conversation and receive update notifications?

Ask