<< Chapter < Page Chapter >> Page >
Various approximations for distributions are studied, especially those involving the Binomial, Poisson, gamma, and Gaussian (normal) distributions. m-procedures are used to make comparisons. A simple approximation to a continuous random variable is obtained by subdividing an interval which includes the range (the set of possible values) into small enough subintervals that the density is approximately constant over each subinterval. A point in each subinterval is selected and is assigned the probability mass in its subinterval. The combination of the selected points and the corresponding probabilities describes the distribution of an approximating simple random variable. Calculations based on this distribution approximate corresponding calculations on the continuous distribution.

Binomial, poisson, gamma, and gaussian distributions

The Poisson approximation to the binomial distribution

The following approximation is a classical one. We wish to show that for small p and sufficiently large n

P ( X = k ) = C ( n , k ) p k ( 1 - p ) n - k e - n p n p k !

Suppose p = μ / n with n large and μ / n < 1 . Then,

P ( X = k ) = C ( n , k ) ( μ / n ) k ( 1 - μ / n ) n - k = n ( n - 1 ) ( n - k + 1 ) n k 1 - μ n - k 1 - μ n n μ k k !

The first factor in the last expression is the ratio of polynomials in n of the same degree k , which must approach one as n becomes large. The second factor approaches one as n becomes large. According to a well known property of the exponential

1 - μ n n e - μ as n

The result is that for large n , P ( X = k ) e - μ μ k k ! , where μ = n p .

The Poisson and gamma distributions

Suppose Y Poisson ( λ t ) . Now X gamma ( α , λ ) iff

P ( X t ) = λ α Γ ( α ) 0 t x α - 1 e - λ x d x = 1 Γ ( α ) 0 t ( λ x ) α - 1 e - λ x d ( λ x )
= 1 Γ ( α ) 0 λ t u α - 1 e - u d u

A well known definite integral, obtained by integration by parts, is

a t n - 1 e - t d t = Γ ( n ) e - a k = 0 n - 1 a k k ! with Γ ( n ) = ( n - 1 ) !

Noting that 1 = e - a e a = e - a k = 0 a k k ! we find after some simple algebra that

1 Γ ( n ) 0 a t n - 1 e - t d t = e - a k = n a k k !

For a = λ t and α = n , we have the following equality iff X gamma ( α , λ ) .

P ( X t ) = 1 Γ ( n ) 0 λ t u n - 1 d - u d u = e - λ t k = n ( λ t ) k k !

Now

P ( Y n ) = e - λ t k = n ( λ t ) k k ! iff Y Poisson ( λ t )

The gaussian (normal) approximation

The central limit theorem, referred to in the discussion of the gaussian or normal distribution above, suggests that the binomial and Poisson distributions should be approximated by the gaussian.The number of successes in n trials has the binomial ( n , p ) distribution. This random variable may be expressed

X = i = 1 n I E i where the I E i constitute an independent class

Since the mean value of X is n p and the variance is n p q , the distribution should be approximately N ( n p , n p q ) .

A graph of the Gaussian approximation to the binomial: n=300, p=0.1. The x-axis represents the values of k ranging from 10-50, while the y-axis shows range of density from 0.01-0.08. The distribution plotted rises and falls at an equal rate with its peak at (30,0.075). The distribution occurs over a series of vertical bars with their heights roughly approximate to the corresponding position of the distribution. 'The actual distribution looks like a bell curve'. A graph of the Gaussian approximation to the binomial: n=300, p=0.1. The x-axis represents the values of k ranging from 10-50, while the y-axis shows range of density from 0.01-0.08. The distribution plotted rises and falls at an equal rate with its peak at (30,0.075). The distribution occurs over a series of vertical bars with their heights roughly approximate to the corresponding position of the distribution. 'The actual distribution looks like a bell curve'.
Gaussian approximation to the binomial.

Use of the generating function shows that the sum of independent Poisson random variables is Poisson. Now if X Poisson ( μ ) , then X may be considered the sum of n independent random variables, each Poisson ( μ / n ) . Since the mean value and the variance are both μ , it is reasonable to suppose that suppose that X is approximately N ( μ , μ ) .

It is generally best to compare distribution functions. Since the binomial and Poisson distributions are integer-valued, it turns out that the best gaussian approximaton is obtainedby making a “continuity correction.” To get an approximation to a density for an integer-valued random variable, the probability at t = k is represented by a rectangle of height p k and unit width, with k as the midpoint. Figure 1 shows a plot of the “density” and the corresponding gaussian density for n = 300 , p = 0 . 1 . It is apparent that the gaussian density is offset by approximately 1/2. To approximate the probability X k , take the area under the curve from k + 1 / 2 ; this is called the continuity correction .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Applied probability. OpenStax CNX. Aug 31, 2009 Download for free at http://cnx.org/content/col10708/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Applied probability' conversation and receive update notifications?

Ask