<< Chapter < Page Chapter >> Page >

If X is a normally distributed random variable and X ~ N(μ, σ) , then the z-score is:

z = x - μ σ

The z-score tells you how many standard deviations that the value x is above (to the right of) or below (to the left of) the mean, μ . Values of x that are larger than the mean have positive z-scores and values of x that are smaller than the mean have negative z-scores. If x equals the mean, then x has a z-score of 0 .

Suppose X ~ N(5, 6) . This says that X is a normally distributed random variable with mean μ = 5 and standard deviation σ = 6 . Suppose x = 17 . Then:

z = x - μ σ = 17 - 5 6 = 2

This means that x = 17 is 2 standard deviations (2σ) above or to the right of the mean μ = 5 . The standard deviation is σ = 6 .

Notice that:

5 + 2 6 = 17 (The pattern is μ + z σ = x . )

Now suppose x=1 . Then:

z = x - μ σ = 1 - 5 6 = - 0.67 (rounded to two decimal places)

This means that x = 1 is 0.67 standard deviations (- 0.67σ) below or to the left of the mean μ = 5 . Notice that:

5 + ( -0.67 ) ( 6 ) is approximately equal to 1 (This has the pattern μ + ( -0.67 ) σ = 1 )

Summarizing, when z is positive, x is above or to the right of μ and when z is negative, x is to the left of or below μ .

Some doctors believe that a person can lose 5 pounds, on the average, in a month by reducing his/her fat intake and by exercising consistently. Suppose weight loss has anormal distribution. Let X = the amount of weight lost (in pounds) by a person in a month. Use a standard deviation of 2 pounds. X ~ N(5, 2) . Fill in the blanks.

Suppose a person lost 10 pounds in a month. The z-score when x = 10 pounds is z = 2.5 (verify). This z-score tells you that x = 10 is ________ standard deviations to the ________ (right or left) of the mean _____ (What is the mean?).

This z-score tells you that x = 10 is 2.5 standard deviations to the right of the mean 5 .

Suppose a person gained 3 pounds (a negative weight loss). Then z = __________. This z-score tells you that x = -3 is ________ standard deviations to the __________ (right or left) of the mean.

z = -4 . This z-score tells you that x = -3 is 4 standard deviations to the left of the mean.

Suppose the random variables X and Y have the following normal distributions: X ~ N(5, 6) and Y ~ N(2, 1) . If x = 17 , then z  =  2 . (This was previously shown.) If y = 4 , what is z ?

z = y - μ σ = 4 - 2 1 = 2 where μ=2 and σ=1.

The z-score for y = 4 is z = 2 . This means that 4 is z = 2 standard deviations to the right of the mean. Therefore, x = 17 and y = 4 are both 2 (of their ) standard deviations to the right of their respective means.

The z-score allows us to compare data that are scaled differently. To understand the concept, suppose X ~ N(5, 6) represents weight gains for one group of people who are trying to gain weight in a 6 week period and Y ~ N(2, 1) measures the same weight gain for a second group of people. A negative weight gain would be a weight loss.Since x = 17 and y = 4 are each 2 standard deviations to the right of their means, they represent the same weight gain relative to their means .

The empirical rule

If X is a random variable and has a normal distribution with mean µ and standard deviation σ then the Empirical Rule says (See the figure below)
  • About 68.27% of the x values lie between -1 σ and +1 σ of the mean µ (within 1 standard deviation of the mean).
  • About 95.45% of the x values lie between -2 σ and +2 σ of the mean µ (within 2 standard deviations of the mean).
  • About 99.73% of the x values lie between -3 σ and +3 σ of the mean µ (within 3 standard deviations of the mean). Notice that almost all the x values lie within 3 standard deviations of the mean.
  • The z-scores for +1 σ and –1 σ are +1 and -1, respectively.
  • The z-scores for +2 σ and –2 σ are +2 and -2, respectively.
  • The z-scores for +3 σ and –3 σ are +3 and -3 respectively.
Empirical Rule
The Empirical Rule is also known as the 68-95-99.7 Rule.

Suppose X has a normal distribution with mean 50 and standard deviation 6.

  • About 68.27% of the x values lie between -1 σ = (-1)(6) = -6 and 1 σ = (1)(6) = 6 of the mean 50. The values 50 - 6 = 44 and 50 + 6 = 56 are within 1 standard deviation of the mean 50. The z-scores are -1 and +1 for 44 and 56, respectively.
  • About 95.45% of the x values lie between -2 σ = (-2)(6) = -12 and 2 σ = (2)(6) = 12 of the mean 50. The values 50 - 12 = 38 and 50 + 12 = 62 are within 2 standard deviations of the mean 50. The z-scores are -2 and 2 for 38 and 62, respectively.
  • About 99.73% of the x values lie between -3 σ = (-3)(6) = -18 and 3 σ = (3)(6) = 18 of the mean 50. The values 50 - 18 = 32 and 50 + 18 = 68 are within 3 standard deviations of the mean 50. The z-scores are -3 and +3 for 32 and 68, respectively.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Collaborative statistics using spreadsheets. OpenStax CNX. Jan 05, 2016 Download for free at http://legacy.cnx.org/content/col11521/1.23
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Collaborative statistics using spreadsheets' conversation and receive update notifications?

Ask