<< Chapter < Page Chapter >> Page >

Problems&Exercises

Integrated Concepts

The 54.0-eV electron in [link] has a 0.167-nm wavelength. If such electrons are passed through a double slit and have their first maximum at an angle of 25 . size 12{"25" "." 0°} {} , what is the slit separation d size 12{d} {} ?

0.395 nm

Integrated Concepts

An electron microscope produces electrons with a 2.00-pm wavelength. If these are passed through a 1.00-nm single slit, at what angle will the first diffraction minimum be found?

Integrated Concepts

A certain heat lamp emits 200 W of mostly IR radiation averaging 1500 nm in wavelength. (a) What is the average photon energy in joules? (b) How many of these photons are required to increase the temperature of a person’s shoulder by 2 . C size 12{2 "." 0°C} {} , assuming the affected mass is 4.0 kg with a specific heat of 0 .83 kcal /kg ºC size 12{0 "." "83"" kcal/kg" cdot °C} {} . Also assume no other significant heat transfer. (c) How long does this take?

(a) 1.3 × 10 19 J size 12{1 "." "33" times "10" rSup { size 8{ - "19"} } " J"} {}

(b) 2 . 1 × 10 23 size 12{2 "." 1 times "10" rSup { size 8{"23"} } } {}

(c) 1 . 4 × 10 2 s size 12{1 "." 4 times "10" rSup { size 8{2} } " s"} {}

Integrated Concepts

On its high power setting, a microwave oven produces 900 W of 2560 MHz microwaves. (a) How many photons per second is this? (b) How many photons are required to increase the temperature of a 0.500-kg mass of pasta by 45 . C size 12{"45" "." 0°C} {} , assuming a specific heat of 0 . 900 kcal/kg ºC size 12{0 "." "900"" kcal/kg" cdot °C} {} ? Neglect all other heat transfer. (c) How long must the microwave operator wait for their pasta to be ready?

Integrated Concepts

(a) Calculate the amount of microwave energy in joules needed to raise the temperature of 1.00 kg of soup from 20 . C size 12{"20" "." 0°C} {} to 100 ºC size 12{"100"°C} {} . (b) What is the total momentum of all the microwave photons it takes to do this? (c) Calculate the velocity of a 1.00-kg mass with the same momentum. (d) What is the kinetic energy of this mass?

(a) 3 . 35 × 10 5 J size 12{3 "." "35" times "10" rSup { size 8{5} } " J"} {}

(b) 1 . 12 × 10 –3 kg m/s size 12{1 "." "12" times "10" rSup { size 8{"–3"} } " kg" cdot "m/s"} {}

(c) 1 . 12 × 10 –3 m/s size 12{1 "." "12" times "10" rSup { size 8{"–3"} } " m/s"} {}

(d) 6.23 × 10 –7 J size 12{6 "." "23" times "10" rSup { size 8{"–7"} } " J"} {}

Integrated Concepts

(a) What is γ size 12{γ} {} for an electron emerging from the Stanford Linear Accelerator with a total energy of 50.0 GeV? (b) Find its momentum. (c) What is the electron’s wavelength?

Integrated Concepts

(a) What is γ size 12{γ} {} for a proton having an energy of 1.00 TeV, produced by the Fermilab accelerator? (b) Find its momentum. (c) What is the proton’s wavelength?

(a) 1 . 06 × 10 3 size 12{1 "." "07" times "10" rSup { size 8{3} } } {}

(b) 5 . 33 × 10 16 kg m/s size 12{5 "." "34" times "10" rSup { size 8{ - "16"} } `"kg" cdot "m/s"} {}

(c) 1 . 24 × 10 18 m size 12{1 "." "24" times "10" rSup { size 8{ - "18"} } `m} {}

Integrated Concepts

An electron microscope passes 1.00-pm-wavelength electrons through a circular aperture 2 . 00 μm size 12{2 "." "00 μm"} {} in diameter. What is the angle between two just-resolvable point sources for this microscope?

Integrated Concepts

(a) Calculate the velocity of electrons that form the same pattern as 450-nm light when passed through a double slit. (b) Calculate the kinetic energy of each and compare them. (c) Would either be easier to generate than the other? Explain.

(a) 1 . 62 × 10 3 m/s size 12{1 "." "62" times "10" rSup { size 8{3} } " m/s"} {}

(b) 4 . 42 × 10 19 J size 12{4 "." "41" times "10" rSup { size 8{ - "19"} } " J"} {} for photon, 1 . 19 × 10 24 J size 12{1 "." "19" times "10" rSup { size 8{ - "24"} } `J} {} for electron, photon energy is 3 . 71 × 10 5 size 12{3 "." "71" times "10" rSup { size 8{5} } } {} times greater

(c) The light is easier to make because 450-nm light is blue light and therefore easy to make. Creating electrons with 7.43 μeV size 12{7 "." "43"`"μeV"} {} of energy would not be difficult, but would require a vacuum.

Integrated Concepts

(a) What is the separation between double slits that produces a second-order minimum at 45 . size 12{"45" "." 0°} {} for 650-nm light? (b) What slit separation is needed to produce the same pattern for 1.00-keV protons.

(a) 2 . 30 × 10 6 m size 12{2 "." "30" times "10" rSup { size 8{ - 6} } " m"} {}

(b) 3 . 20 × 10 12 m size 12{3 "." "20" times "10" rSup { size 8{ - "12"} } `m} {}

Integrated Concepts

A laser with a power output of 2.00 mW at a wavelength of 400 nm is projected onto calcium metal. (a) How many electrons per second are ejected? (b) What power is carried away by the electrons, given that the binding energy is 2.71 eV? (c) Calculate the current of ejected electrons. (d) If the photoelectric material is electrically insulated and acts like a 2.00-pF capacitor, how long will current flow before the capacitor voltage stops it?

Integrated Concepts

One problem with x rays is that they are not sensed. Calculate the temperature increase of a researcher exposed in a few seconds to a nearly fatal accidental dose of x rays under the following conditions. The energy of the x-ray photons is 200 keV, and 4 . 00 × 10 13 size 12{4 "." "00" times "10" rSup { size 8{"13"} } } {} of them are absorbed per kilogram of tissue, the specific heat of which is 0 . 830 kcal/kg ºC size 12{0 "." "830"" kcal/kg" cdot °C} {} . (Note that medical diagnostic x-ray machines cannot produce an intensity this great.)

3 . 69 × 10 4 ºC size 12{3 "." "69" times "10" rSup { size 8{ - 4} } `°C} {}

Integrated Concepts

A 1.00-fm photon has a wavelength short enough to detect some information about nuclei. (a) What is the photon momentum? (b) What is its energy in joules and MeV? (c) What is the (relativistic) velocity of an electron with the same momentum? (d) Calculate the electron’s kinetic energy.

Integrated Concepts

The momentum of light is exactly reversed when reflected straight back from a mirror, assuming negligible recoil of the mirror. Thus the change in momentum is twice the photon momentum. Suppose light of intensity 1 . 00 kW/m 2 size 12{1 "." "00 kW/m" rSup { size 8{2} } } {} reflects from a mirror of area 2 . 00 m 2 size 12{2 "." "00 m" rSup { size 8{2} } } {} . (a) Calculate the energy reflected in 1.00 s. (b) What is the momentum imparted to the mirror? (c) Using the most general form of Newton’s second law, what is the force on the mirror? (d) Does the assumption of no mirror recoil seem reasonable?

(a) 2.00 kJ

(b) 1 . 33 × 10 5 kg m/s size 12{1 "." "33" times "10" rSup { size 8{ - 5} } `"kg" cdot "m/s"} {}

(c) 1 . 33 × 10 5 N size 12{1 "." "33" times "10" rSup { size 8{ - 5} } " N"} {}

(d) yes

Integrated Concepts

Sunlight above the Earth’s atmosphere has an intensity of 1 . 30 kW/m 2 size 12{1 "." "30"" kW/m" rSup { size 8{2} } } {} . If this is reflected straight back from a mirror that has only a small recoil, the light’s momentum is exactly reversed, giving the mirror twice the incident momentum. (a) Calculate the force per square meter of mirror. (b) Very low mass mirrors can be constructed in the near weightlessness of space, and attached to a spaceship to sail it. Once done, the average mass per square meter of the spaceship is 0.100 kg. Find the acceleration of the spaceship if all other forces are balanced. (c) How fast is it moving 24 hours later?

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Basic physics for medical imaging. OpenStax CNX. Feb 17, 2014 Download for free at http://legacy.cnx.org/content/col11630/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Basic physics for medical imaging' conversation and receive update notifications?

Ask