<< Chapter < Page Chapter >> Page >

map of proportion of population using improved drinking water sources in 2008
Proportion of Population by Country Using Improved Drinking Water Sources in 2008 Improved drinking water sources, e.g., household connections, public standpipes, boreholes, protected dug wells and springs, and rainwater collections, are defined as those more likely to provide safe water than unimproved water sources, e.g., unprotected wells and springs, vendor-provided water, bottled water (unless water for other uses is available from an improved source), and tanker truck-provided water. Source: World Health Organization

map of proportion of population using improved sanitation facilities in 2008
Proportion of Population by Country Using Improved Sanitation Facilities in 2008 Improved sanitation facilities, e.g., connection to public sewers or septic systems, pour-flush latrines, pit latrines, and ventilated improved pit latrines, are defined as those more likely to be sanitary than unimproved facilities, e.g., bucket latrines, public latrines, and open pit latrines. Source: World Health Organization

map of deaths by country from diarrhea caused by unsafe water, etc. in 2004
Deaths by Country from Diarrhea Caused by Unsafe Water, Unimproved Sanitation, and Poor Hygiene in Children Less than 5 Years Old, 2004 Source: World Health Organization

map of watersheds
Percentage of Impaired Water Bodies in a Watershed by State in USA Based on US EPA Data in 2000 Map of watersheds containing impaired water bodies from the U.S. Environmental Protection Agency's 1998 list of impaired waters Source: U.S. Geological Survey

Water chemistry overview

Compared to other molecules of similar molecular weight, water (H 2 O) has unique physical properties including high values for melting and boiling point, surface tension (water’s cohesion, or “stickiness”), and capacity to dissolve soluble minerals, i.e., act as a solvent    . These properties are related to its asymmetrical structure and polar nature , which means it is electrically neutral overall but it has a net positive charge on the side with the two hydrogen atoms and a net negative charge on the oxygen side (see Figure Structure of Water, Polar Charge of Water, and Hydrogen Bonds between Water Molecules ). This separation of the electrical charge within a water molecule results in hydrogen bonds with other water molecules, mineral surfaces (hydrogen bonding produces the water films on minerals in the unsaturated zone of the subsurface), and dissolved ions (atoms with a negative or positive charge). Many minerals and pollutants dissolve readily in water because water forms hydration shells (spheres of loosely coordinated, oriented water molecules) around ions.

Structure of water, polar charge of water, and hydrogen bonds between water molecules
Structure of Water, Polar Charge of Water, and Hydrogen Bonds between Water Molecules Source: Michal Maňas at Wikimedia Commons

Any natural water contains dissolved chemicals; some of these are important human nutrients, while others can be harmful to human health. The abundance of a water pollutant is commonly given in very small concentration units such as parts per million (ppm) or even parts per billion (ppb). An arsenic concentration of 1 ppm means 1 part of arsenic per million parts of water. This is equivalent to one drop of arsenic in 50 liters of water. To give you a different perspective on appreciating small concentration units, converting 1 ppm to length units is 1 cm (0.4 in) in 10 km (6 miles) and converting 1 ppm to time units is 30 seconds in a year. Total dissolved solids (TDS) represent the total amount of dissolved material in water. Average TDS (salinity) values for rainwater, river water, and seawater are about 4 ppm, 120 ppm, and 35,000 ppm. As discussed in Module Climate Processes; External and Internal Controls , the most important processes that affect the salinity of natural waters are evaporation, which distills nearly pure water and leaves the dissolved ions in the original water, and chemical weathering, which involves mineral dissolution that adds dissolved ions to water. Fresh water is commonly defined as containing less than either 1,000 or 500 ppm TDS, but the US Environmental Protection Agency (EPA) recommends that drinking water not exceed 500 ppm TDS or else it will have an unpleasant salty taste.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Sustainability: a comprehensive foundation. OpenStax CNX. Nov 11, 2013 Download for free at http://legacy.cnx.org/content/col11325/1.43
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Sustainability: a comprehensive foundation' conversation and receive update notifications?

Ask