This module discusses the graphing of exponential curves.
By plotting points, you can discover that the graph of
looks like this:
A few points to notice about this graph.
It goes through the point
because
.
It never dips below the
-axis. The
domain is unlimited, but the
range is y>0. (*Think about our definitions of exponents: whether
is positive or negative, integer or fraction,
is
always positive.)
Every time you move one unit to the right, the graph height doubles. For instance,
is twice
, because it multiplies by
one more 2. So as you move to the right, the
-values start looking like 8, 16, 32, 64, 128, and so on, going up more and more sharply.
Conversely, every time you move one unit to the left, the graph height drops in half. So as you move to the left, the
-values start looking like
,
,
, and so on, falling closer and closer to 0.
What would the graph of
look like? Of course, it would also go through
because
. With each step to the right, it would
triple ; with each step to the left, it would drop in a
third . So the overall shape would look similar, but the rise (on the right) and the drop (on the left) would be faster.
As you might guess, graphs such as
and
all have this same characteristic shape. In fact, any graph
where
will look basically the same: starting at
it will rise more and more sharply on the right, and drop toward zero on the left. This type of graph models
exponential growth —functions that keep multiplying by the same number. A common example, which you work through in the text, is compound interest from a bank.
The opposite graph is
.
Each time you move to the right on this graph, it multiplies by
: in other words, it
divides by 2, heading closer to zero the further you go. This kind of equation is used to model functions that keep
dividing by the same number; for instance, radioactive decay. You will also be working through examples like this one.
Of course, all the
permutations from the first chapter on “functions” apply to these graphs just as they apply to any graph. A particularly interesting example is
. Remember that when you replace
with
,
becomes the old
and vice-versa; in other words, the graph flips around the
-axis. If you take the graph of
and permute it in this way, you get a familiar shape:
Yes, it’s
in a new disguise!
Why did it happen that way? Consider that
. But
is just 1 (in other words, 1 to the
anything is 1), so
. But negative exponents go in the denominator:
is the same thing as
! So we arrive at:
. The two functions are the same, so their graphs are of course the same.
Another fun pair of permutations is:
Looks just likebut vertically stretched: all y-values double
Looks just likebut horizontally shifted: moves 1 to the left
If you permute
in these two ways, you will find that they create the same graph.
Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you.
Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
Got questions? Join the online conversation and get instant answers!