<< Chapter < Page Chapter >> Page >

In physical world around us, we encounter many phenomena which repeat after certain interval of time. In mathematics, the notion of periodicity remains same but with more general connotation. The periodicity of a function is not limited to time. We look for repetition of function values with respect to independent variable. Time could be just one such independent variable. For example, we have seen that trigonometric functions are “many one” relations. This means that we get same value of trigonometric function for different angles. This “many one” relation is the basic requirement for a function to be periodic. In addition, these same values of the function should appear at regular intervals for the values of independent variables in the domain.

We can visualize periodic nature of a function by observing its graph in which a particular smallest segment of the plot can be repeated to construct complete plot.

Periodic function

A sine curve is constructed by repeating a segment of the curve as shown in the lower graph in the figure.

In the two graphs shown above, we have considered two segments corresponding to intervals of “ π ” and “ 2 π ”. The graphs are constructed by repeating the segments one after another. It is clear from the figure that we need smallest segment of an interval “ 2 π ” to construct a sine curve (lower curve).

Definition of periodic function

A function is said to be periodic if there exists a positive real number “T” such that

f x + T = f x for all x D

where “D” is the domain of the function f(x). The least positive real number “T” (T>0) is known as the fundamental period or simply the period of the function. The “T” is not a unique positive number. All integral multiple of “T” within the domain of the function is also the period of the function. Hence,

f x + n T = f x ; n Z , for all x D

In the context of periodic function, an “aperiodic” function is one, which in not periodic. On the other hand, a function is said to be anti-periodic if :

f x + T = - f x for all x D

Periodicity and period

In order to determine periodicity and period of a function, we can follow the algorithm as :

  • Put f(x+T) = f(x).
  • If there exists a positive number “T” satisfying equation in “1” and it is independent of “x”, then f(x) is periodic. Otherwise, function, “f(x)” is aperiodic.
  • The least value of “T” is the period of the periodic function.

Problem : Let f(x) be a function and “k” be a positive real number such that :

f x + k + f x = 0 for all x R

Prove that f(x) is periodic. Also determine its period.

Solution : The given equation can be re-written as :

f x + k = - f x for all x R

Here, our objective is to convert RHS of the equation as f(x). For this, we need to substitute "x" such that RHS function acquires RHS function form. Replacing “x” by “x+k”, we have :

f x + 2 k = - f x + k for all x R

Combining two equations,

f x + 2 k = - 1 X - f x = f x for all x R

It means that f(x) is a periodic function and its period is “2k”.

Problem : Determine period of the function :

f x = a sin k x + b cos k x

Solution : The function is sum of two trigonometric functions. We can reduce this function is terms of a single trigonometric function to determine its periodic nature. Let

a = r cos θ ; b = r sin θ

r = a 2 + b 2

Substituting in the function, we have :

f x = r cos θ sin k x + r sin θ cos k x = r sin k x + θ

This is a periodic function. Also, period of “ag(x)” is same as that of “g(x)”. Therefore, period of “r sin (kx + θ)” is same as that of “sin (kx + θ)”. On the other hand, period of g(ax+b) is equal to the period of g(x), divided by “|a|”. Now, period of “sinx” is “2π”. Hence, period of the given function is :

T = 2 π | k |

Alternatively, we can treat given function as addition of two functions. The period of each term is “2π/|k|”. Applying LCM rule (discussed later), the period of given function is equal to LCM of two periods, which is “2π/|k|”.

Questions & Answers

Difference between voluntary and non voluntary
Robert Reply
how possible science can explain natural occuring
David Reply
why qualitative method
David
using hypothetical examples from contemporary society discuss sociological imaginations
Orient Reply
Using Social Identity Theory, explain how group membership influences individual behavior and intergroup dynamics. Provide examples of how in-group favoritism and out-group bias manifest in real-world scenarios, such as in schools, workplaces, or communities. What strategies can be employed to mitigate negative intergroup behaviors rooted in social identity?
Adejumobi Reply
of course group membership can contribute in influencing an individual behaviour this is because when ever an individual associate with other group members he or she try to adopt their behaviour in one way or the other because human beings are very dynamic
Faiza
introduction to sociology
Hussain Reply
Sociology is the scientific study of the society. It's about studying man in groups at the complex form.
Prince
start new n questions too
Emmaunella Reply
Good evening everyone
JOE
what does secularization means
Munashe
summarize halerambos & holbon
David Reply
the Three stages of Auguste Comte
Clementina Reply
what are agents of socialization
Antonio Reply
socialazatio
Alkasim
sociology of education
Nuhu Reply
definition of sociology of education
Nuhu
definition of sociology of education
Emmaunella
what is culture
Abdulrahim Reply
shared beliefs, values, and practices
AI-Robot
What are the two type of scientific method
ogunniran Reply
I'm willing to join you
Aceng Reply
what are the scientific method of sociology
Man
what is socialization
ogunniran Reply
the process wherein people come to understand societal norms and expectations, to accept society's beliefs, and to be aware of societal values
AI-Robot
scientific method in doing research
ogunniran
defimition of sickness in afica
Anita
Cosmology
ogunniran
Hmmm
ogunniran
send
Alkasim
sendggg
Alkasim
list and explain the terms that found in society
REMMY Reply
list and explain the terms that found in society
Mukhtar
what are the agents of socialization
Antonio
Family Peer group Institution
Abdulwajud
I mean the definition
Antonio
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Functions. OpenStax CNX. Sep 23, 2008 Download for free at http://cnx.org/content/col10464/1.64
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Functions' conversation and receive update notifications?

Ask