<< Chapter < Page Chapter >> Page >

If “a” and “b” are non-zero real number and functions g(x) and h(x) are periodic functions having periods, “ T 1 ” and “ T 2 ”, then function f x = a g x ± b h x is also a periodic function. The period of f(x) is LCM of " T 1 " and " T 2 ".

Finding lcm

LCM of integral numbers is obtained easily. There is, however, difficulty in finding LCM when numbers are fractions (like 3/4, 1/3 etc.) or irrational numbers (like π, 2√2 etc.).

For rational fraction, we can find LCM using following formula :

LCM = LCM of numerators HCF of denominators

Consider fractions 3/5 and 2/3. The LCM of numerators 3 and 2 is 6. The HCF of denominators is 1. Hence, LCM of two fractions is 6/1 i.e. 6.

This rule also works for irrational numbers of similar type like 2√2/3 , 3√2/5 etc or π/2, 3π/2 etc. However, we can not find LCM of irrational numbers of different kind like 2√2 and π. Similarly, there is no LCM for combination of rational and irrational numbers.

For example, LCM of π/3 and 3π/2 is :

LCM = LCM of numerators HCF of denominators = LCM of (π,3π) HCF of (2,3) = 1 =

Problem : Find period of

f x = sin 2 π x + π 8 + 2 sin 3 π x + π 3

Solution : Period of sin 2 π x + π / 8 is :

T 1 = 2 π 2 π = 1

Period of 2 sin 3 π x + π / 3 is :

T 2 = 2 π 3 π = 2 3

LCM of numbers involving fraction is equal to the ratio of LCM of numerators and HCF of denominators. Hence,

LCM = LCM of numerators HCF of denominators = LCM of (1,2) HCF of (1,3) = 2 1 = 2

Exception to lcm rule

LCM rule is not always true. There are exceptions to this rule. We do not apply this rule, when functions are co-functions of each other or when functions are even functions. Further, if individual periods are rational and irrational numbers respectively, then LCM is not defined. As such, this rule can not be applied in such situation as well.

Two functions f(x) and g(y) are cofunctions if x and y are complimentary angles. The functions sinx and consx are cofunctions as :

sin x = cos ( π 2 - x )

Similarly, |cosx| and |sinx| are cofunctions as :

| cos x | = | sin ( π 2 - x ) |

In such cases where LCM rule is not applicable, we proceed to apply definition of periodic function to determine period.

Problem : Find period of

f x = | cos x | + | sin x |

Solution : We know that |cosx| and |sinx| are co-functions. Recall that a function “f” is co-function of a function “g” if f(x) = g(y) where x and y are complementary angles. Hence, we can not apply LCM rule. But, we know that sin(x + π/2) = cosx. This suggests that the function may have the period "π/2". We check this as :

f x + π 2 = | cos x + π 2 | + | sin x + π 2 |

f x + π 2 = | - cos x | + | sin x | = | cos x | + | sin x | = f x

Hence, period is “ π / 2 ”.

It is intuitive here to work with this problem using LCM rule and compare the result. The period of modulus of all six trigonometric functions is π. The periods of |cosx| and |sinx| are π. Now, applying LCM rule, the period of given function is LCM of π and π, which is π.

Problem : Find period of

f x = sin 2 x + cos 4 x

Solution : Here, we see that f(-x) = - f(x).

f -x = sin 2 -x + cos 4 -x = sin 2 x + cos 4 x = f x

This means that given function is even function. As such, we can apply LCM rule. We, therefore, proceed to reduce the given function in terms of one trigonometric function type.

f x = sin 2 x + cos 2 x 1 sin 2 x = sin 2 x + cos 2 x sin 2 X cos 2 x

f x = 1 1 4 sin 2 2 x = 1 1 4 X 1 cos 4 x 2

f x = 1 1 8 + cos 4 x 8

T = 2 π 4 = π / 2

Note that if we apply LCM rule, then period evaluates to " π ".

Important results

The results obtained in earlier sections are summarized here for ready reference.

1: All trigonometric functions are periodic on “R”. The functions sin x , cos x , sec x and cosec x have periodicity of " 2 π ". On the other hand, periodicity of tan x and cot x is π .

2: Functions sin n x , cos n x , cosec n x and sec n x are periodic on “R” with period “ π ” when “n” is even and “ 2 π ” when “n” is fraction or odd. On the other hand, Functions tan n x and cot n x are periodic on “R” with period “ π ” whether n is odd or even.

3: Functions | sin x | , | cos x | , | tan x | , | cosec x | , | sec x | and | cot x | are periodic on “R” with period “ π ”.

4: A constant function is a periodic function without any fundamental period. For example,

f x = c

f x = sin 2 x + cos 2 x

5: If “T” is the period of f(x), then period of function of the form given below is “T/|b|” :

a f ( b x + c ) + d ; a,b,c,d Z

6: If f(x) is a periodic function with period “T” and g(x) is one one function (bijection), then "gof" is also periodic with period “T”.

7: If f(x) is a periodic function with a period T and its domain is a proper subset of domain of g(x), then gof(x) is a periodic function with a period T.

Problem : Find period of function :

f ( x ) = sin ( x )

where {} denotes fraction part function.

Solution : The fraction part function {x} is a periodic function with a period “1”. Its domain is R. On the other hand, sinx is a function having domain R. Therefore, domain of {x} is a proper subset of the domain of sinx. Hence, period of sin{x} is 1.

Problem : Find period of function tan⁻¹tanx

Solution : Inverse trigonometric function tan⁻¹x is one one function in [1,1] and tanx is a periodic function with period π in R. Hence, function tan⁻¹tanx function is a periodic function with period π.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Functions. OpenStax CNX. Sep 23, 2008 Download for free at http://cnx.org/content/col10464/1.64
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Functions' conversation and receive update notifications?

Ask