<< Chapter < Page | Chapter >> Page > |
After reading this module, students should be able to
The word "soil" has been defined differently by different scientific disciplines. In agriculture and horticulture, soil generally refers to the medium for plant growth, typically material within the upper meter or two (see Figure Soil Profile ).
We will use this definition in this chapter. In common usage, the term soil is sometimes restricted to only the dark topsoil in which we plant our seeds or vegetables. In a more broad definition, civil engineers use the term soil for any unconsolidated (soft when wet) material that is not considered bedrock. Under this definition, soil can be as much as several hundred feet thick! Ancient soils, sometimes buried and preserved in the subsurface, are referred to as paleosols (see Figure Modern versus Buried Soil Profiles ) and reflect past climatic and environmental conditions.
From a somewhat philosophical standpoint, soil can be viewed as the interface between the atmosphere and the earth's crust, and is sometimes referred to as the skin of the earth. Soil also incorporates aspects of the biosphere and the hydrosphere. From a physical standpoint, soil contains solid, liquid, and gaseous phases. The solid portion of the soil consists predominantly of mineral matter, but also contains organic matter (humus) and living organisms. The pore spaces between mineral grains are filled with varying proportions of water and air.
Soil is important to our society as it provides the foundation for most of the critical aspects of civilization. Our building structures and homes, food, agricultural products, and wood products all rely on soil. Forests, prairies, and wetlands all have a dependence on soil. Of course, soil is also a critical component for terrestrial life on earth, including most animals, plants, and many microorganisms.
Soil plays a role in nearly all natural cycles on the earth's surface. Global cycling of key nutrients, such as Carbon (C), Nitrogen (N), Sulfur (S), and Phosphorous (P), all pass through soil. In the hydrologic cycle, soil helps to mediate the flow of precipitation from the land surface into the groundwater or can control stormwater runoff into lakes, streams, bays, and oceans. Soil microorganisms or microflora can help to modify or destroy environmental pollutants.
Notification Switch
Would you like to follow the 'Sustainability: a comprehensive foundation' conversation and receive update notifications?