<< Chapter < Page Chapter >> Page >
Derives basic properties of the Laplace transform.

Properties of the laplace transform

The properties associated with the Laplace transform are similar to those of the Fourier transform. First, let's set define some notation, we will use the notation L { } to denote the Laplace transform operation. Therefore we can write X ( s ) = L x ( t ) and x ( t ) = L - 1 X ( s ) for the forward and inverse Laplace transforms, respectively. We can also use the transform pair notation used earlier:

x ( t ) X ( s )

With this notation defined, lets now look at some properties.

Linearity

Given that x 1 ( t ) X 1 ( s ) and x 2 ( t ) X 2 ( s ) then for any constants α and β , we have

α x 1 ( t ) + β x 2 ( t ) α X 1 ( s ) + β X 2 ( s )

The linearity property follows easily using the definition of the Laplace transform.

Time delay

The reason we call this the time delay property rather than the time shift property is that the time shift must be positive, i.e. if τ > 0 , then x ( t - τ ) corresponds to a delay. If τ < 0 then we would not be able to use the single-sided Laplace transform because we would have a lower integration limit of τ , which is less than zero. To derive the property, lets evaluate the Laplace transform of the time-delayed signal

L x ( t - τ ) = 0 x ( t - τ ) e - s t d t

Letting γ = t - τ leads to t = γ + τ and d t = d γ . Substituting these quantities into [link] gives

L x ( t - τ ) = - τ x ( γ ) e - s ( γ + τ ) d γ = e - s τ - τ x ( γ ) e - s γ d γ = e - s τ - τ 0 x ( γ ) e - s γ d γ + e - s τ 0 x ( γ ) e - s γ d γ

where we note that the first integral in the last line is zero since x ( t ) = 0 , t < 0 . Therefore the time delay property is given by

L x ( t - τ ) = e - s τ X ( s )

S-shift

This property is the Laplace transform corresponds to the frequency shift property of the Fourier transform. In fact, the derivation of the s -shift property is virtually identical to that of the frequency shift property.

L e - a t x ( t ) = 0 e - a t x ( t ) e - s t d t = 0 x ( t ) e - ( a + s ) t d t = 0 x ( t ) e - ( a + σ + j Ω ) t d t = X ( s + a )

The s -shift property also alters the region of convergence of the Laplace transform. If the region of convergence for X ( s ) is σ > σ m i n , then the region of convergence for L e - a t x ( t ) is σ > σ m i n - Re ( a ) .

Multiplication by t

Let's begin by taking the derivative of the Laplace transform:

d X ( s ) d s = d d s 0 x ( t ) e - s t d t = 0 x ( t ) d d s e - s t d t = - 0 t x ( t ) e - s t d t

So we can write

L t x ( t ) = - d X ( s ) d s

This idea can be extended to multiplication by t n . Letting y ( t ) = t x ( t ) , if follows that

t y ( t ) - d Y ( s ) d s d 2 X ( s ) d s 2

Proceeding in this manner, we find that

t n x ( t ) ( - 1 ) n d n X ( s ) d s n

Time scaling

The time scaling property for the Laplace transform is similar to that of the Fourier transform:

L x ( α t ) = 0 x ( α t ) e - s t d t = 1 α 0 x ( γ ) e - s α γ d γ = 1 α X s α

where in the second equality, we made the substitution t = γ α and d t = d γ α .

Convolution

The derivation of the convolution property for the Laplace transform is virtually identical to that of the Fourier transform. We begin with

L - x ( τ ) h ( t - τ ) d τ = - x ( τ ) L h ( t - τ ) d τ

Applying the time-delay property of the Laplace transform gives

- x ( τ ) L h ( t - τ ) d τ = H ( s ) - x ( τ ) e - s τ d τ = H ( s ) X ( s )

If h ( t ) is the the impulse response of a linear time-invariant system, then we call H ( s ) the system function of the system. The frequency response results by setting s = j Ω in H ( s ) . The system function provides us with a very powerful means of determining the output of a linear time-invariant filter given the input signal. It will also enable us to determine a means of establishing the stability We will discuss stability shortly of a linear-time invariant filter, something which was not possible with the frequency response.

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals, systems, and society. OpenStax CNX. Oct 07, 2012 Download for free at http://cnx.org/content/col10965/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals, systems, and society' conversation and receive update notifications?

Ask