<< Chapter < Page Chapter >> Page >
Derives basic properties of the Laplace transform.

Properties of the laplace transform

The properties associated with the Laplace transform are similar to those of the Fourier transform. First, let's set define some notation, we will use the notation L { } to denote the Laplace transform operation. Therefore we can write X ( s ) = L x ( t ) and x ( t ) = L - 1 X ( s ) for the forward and inverse Laplace transforms, respectively. We can also use the transform pair notation used earlier:

x ( t ) X ( s )

With this notation defined, lets now look at some properties.

Linearity

Given that x 1 ( t ) X 1 ( s ) and x 2 ( t ) X 2 ( s ) then for any constants α and β , we have

α x 1 ( t ) + β x 2 ( t ) α X 1 ( s ) + β X 2 ( s )

The linearity property follows easily using the definition of the Laplace transform.

Time delay

The reason we call this the time delay property rather than the time shift property is that the time shift must be positive, i.e. if τ > 0 , then x ( t - τ ) corresponds to a delay. If τ < 0 then we would not be able to use the single-sided Laplace transform because we would have a lower integration limit of τ , which is less than zero. To derive the property, lets evaluate the Laplace transform of the time-delayed signal

L x ( t - τ ) = 0 x ( t - τ ) e - s t d t

Letting γ = t - τ leads to t = γ + τ and d t = d γ . Substituting these quantities into [link] gives

L x ( t - τ ) = - τ x ( γ ) e - s ( γ + τ ) d γ = e - s τ - τ x ( γ ) e - s γ d γ = e - s τ - τ 0 x ( γ ) e - s γ d γ + e - s τ 0 x ( γ ) e - s γ d γ

where we note that the first integral in the last line is zero since x ( t ) = 0 , t < 0 . Therefore the time delay property is given by

L x ( t - τ ) = e - s τ X ( s )

S-shift

This property is the Laplace transform corresponds to the frequency shift property of the Fourier transform. In fact, the derivation of the s -shift property is virtually identical to that of the frequency shift property.

L e - a t x ( t ) = 0 e - a t x ( t ) e - s t d t = 0 x ( t ) e - ( a + s ) t d t = 0 x ( t ) e - ( a + σ + j Ω ) t d t = X ( s + a )

The s -shift property also alters the region of convergence of the Laplace transform. If the region of convergence for X ( s ) is σ > σ m i n , then the region of convergence for L e - a t x ( t ) is σ > σ m i n - Re ( a ) .

Multiplication by t

Let's begin by taking the derivative of the Laplace transform:

d X ( s ) d s = d d s 0 x ( t ) e - s t d t = 0 x ( t ) d d s e - s t d t = - 0 t x ( t ) e - s t d t

So we can write

L t x ( t ) = - d X ( s ) d s

This idea can be extended to multiplication by t n . Letting y ( t ) = t x ( t ) , if follows that

t y ( t ) - d Y ( s ) d s d 2 X ( s ) d s 2

Proceeding in this manner, we find that

t n x ( t ) ( - 1 ) n d n X ( s ) d s n

Time scaling

The time scaling property for the Laplace transform is similar to that of the Fourier transform:

L x ( α t ) = 0 x ( α t ) e - s t d t = 1 α 0 x ( γ ) e - s α γ d γ = 1 α X s α

where in the second equality, we made the substitution t = γ α and d t = d γ α .

Convolution

The derivation of the convolution property for the Laplace transform is virtually identical to that of the Fourier transform. We begin with

L - x ( τ ) h ( t - τ ) d τ = - x ( τ ) L h ( t - τ ) d τ

Applying the time-delay property of the Laplace transform gives

- x ( τ ) L h ( t - τ ) d τ = H ( s ) - x ( τ ) e - s τ d τ = H ( s ) X ( s )

If h ( t ) is the the impulse response of a linear time-invariant system, then we call H ( s ) the system function of the system. The frequency response results by setting s = j Ω in H ( s ) . The system function provides us with a very powerful means of determining the output of a linear time-invariant filter given the input signal. It will also enable us to determine a means of establishing the stability We will discuss stability shortly of a linear-time invariant filter, something which was not possible with the frequency response.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals, systems, and society. OpenStax CNX. Oct 07, 2012 Download for free at http://cnx.org/content/col10965/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals, systems, and society' conversation and receive update notifications?

Ask