<< Chapter < Page Chapter >> Page >

Calculation of pressure using an open-end manometer

The pressure of a sample of gas is measured at sea level with an open-end Hg (mercury) manometer, as shown to the right. Determine the pressure of the gas in:

(a) mm Hg

(b) atm

(c) kPa

A diagram of an opne-end manometer is shown. To the upper left is a spherical container labeled, “gas.” This container is connected by a valve to a U-shaped tube which is labeled “open end” at the upper right end. The container and a portion of tube that follows are shaded pink. The lower portion of the U-shaped tube is shaded grey with the height of the gray region being greater on the right side than on the left. The difference in height of 13.7 c m is indicated with horizontal line segments and arrows.

Solution

The pressure of the gas equals the hydrostatic pressure due to a column of mercury of height 13.7 cm plus the pressure of the atmosphere at sea level. (The pressure at the bottom horizontal line is equal on both sides of the tube. The pressure on the left is due to the gas and the pressure on the right is due to 13.7 cm of Hg plus atmospheric pressure.)

(a) In mm Hg, this is: 137 mm Hg + 760 mm Hg = 897 mm Hg

(b) 897 mm Hg × 1 atm 760 mm Hg = 1.18 atm

(c) 1.18 atm × 101.325 kPa 1 atm = 1.20 × 10 2 kPa

Check your learning

The pressure of a sample of gas is measured at sea level with an open-end Hg manometer, as shown to the right. Determine the pressure of the gas in:

(a) mm Hg

(b) atm

(c) kPa

A diagram of an open-end manometer is shown. To the upper left is a spherical container labeled, “gas.” This container is connected by a valve to a U-shaped tube which is labeled “open end” at the upper right end. The container and a portion of tube that follows are shaded pink. The lower portion of the U-shaped tube is shaded grey with the height of the gray region being greater on the left side than on the right. The difference in height of 4.63 i n is indicated with horizontal line segments and arrows.

Answer:

(a) 642 mm Hg; (b) 0.845 atm; (c) 85.6 kPa

Got questions? Get instant answers now!

Measuring blood pressure

Blood pressure is measured using a device called a sphygmomanometer (Greek sphygmos = “pulse”). It consists of an inflatable cuff to restrict blood flow, a manometer to measure the pressure, and a method of determining when blood flow begins and when it becomes impeded ( [link] ). Since its invention in 1881, it has been an essential medical device. There are many types of sphygmomanometers: manual ones that require a stethoscope and are used by medical professionals; mercury ones, used when the most accuracy is required; less accurate mechanical ones; and digital ones that can be used with little training but that have limitations. When using a sphygmomanometer, the cuff is placed around the upper arm and inflated until blood flow is completely blocked, then slowly released. As the heart beats, blood forced through the arteries causes a rise in pressure. This rise in pressure at which blood flow begins is the systolic pressure— the peak pressure in the cardiac cycle. When the cuff’s pressure equals the arterial systolic pressure, blood flows past the cuff, creating audible sounds that can be heard using a stethoscope. This is followed by a decrease in pressure as the heart’s ventricles prepare for another beat. As cuff pressure continues to decrease, eventually sound is no longer heard; this is the diastolic pressure— the lowest pressure (resting phase) in the cardiac cycle. Blood pressure units from a sphygmomanometer are in terms of millimeters of mercury (mm Hg).

This figure includes two photographs. The first photo shows a young adult male placing a blood pressure cuff on the upper arm of a young adult female. The second image shows a typical sphygmomanometer, which includes a black blood pressure cuff, tubing, pump, and pressure gauge.
(a) A medical technician prepares to measure a patient’s blood pressure with a sphygmomanometer. (b) A typical sphygmomanometer uses a valved rubber bulb to inflate the cuff and a diaphragm gauge to measure pressure. (credit a: modification of work by Master Sgt. Jeffrey Allen)

Meteorology, climatology, and atmospheric science

Throughout the ages, people have observed clouds, winds, and precipitation, trying to discern patterns and make predictions: when it is best to plant and harvest; whether it is safe to set out on a sea voyage; and much more. We now face complex weather and atmosphere-related challenges that will have a major impact on our civilization and the ecosystem. Several different scientific disciplines use chemical principles to help us better understand weather, the atmosphere, and climate. These are meteorology, climatology, and atmospheric science. Meteorology is the study of the atmosphere, atmospheric phenomena, and atmospheric effects on earth’s weather. Meteorologists seek to understand and predict the weather in the short term, which can save lives and benefit the economy. Weather forecasts ( [link] ) are the result of thousands of measurements of air pressure, temperature, and the like, which are compiled, modeled, and analyzed in weather centers worldwide.

A weather map of the United States is shown which points out areas of high and low pressure with the letters H in blue and L in red. Curved lines in grey, orange, blue, and red are shown. The orange lines are segmented. The red and blue lines have small red or blue semi-circles and triangles attached along their lengths. In dashed white lines, latitude and longitude are indicated. Underlined three and four digit numbers also appear across the map.
Meteorologists use weather maps to describe and predict weather. Regions of high (H) and low (L) pressure have large effects on weather conditions. The gray lines represent locations of constant pressure known as isobars. (credit: modification of work by National Oceanic and Atmospheric Administration)

In terms of weather, low-pressure systems occur when the earth’s surface atmospheric pressure is lower than the surrounding environment: Moist air rises and condenses, producing clouds. Movement of moisture and air within various weather fronts instigates most weather events.

The atmosphere is the gaseous layer that surrounds a planet. Earth’s atmosphere, which is roughly 100–125 km thick, consists of roughly 78.1% nitrogen and 21.0% oxygen, and can be subdivided further into the regions shown in [link] : the exosphere (furthest from earth,>700 km above sea level), the thermosphere (80–700 km), the mesosphere (50–80 km), the stratosphere (second lowest level of our atmosphere, 12–50 km above sea level), and the troposphere (up to 12 km above sea level, roughly 80% of the earth’s atmosphere by mass and the layer where most weather events originate). As you go higher in the troposphere, air density and temperature both decrease.

This diagram shows half of a two dimensional view of the earth in blue and green. A narrow white layer, labeled “troposphere 0 dash 12 k m” covers this hemisphere. This layer is also labeled “layer where most weather events originate.” Next, a thicker light blue layer labeled “Stratosphere 12 dash 50 k m” is shown. This is followed by a slightly thinner layer also in light blue labeled “Mesosphere 50 dash 80 k m.” Following this layer is a relatively thick light blue layer labeled “Thermosphere 80 dash 700 k m.” A blue layer appears that covers the rightmost two thirds of the diagram. This region gradually darkens from a lighter blue at the left to a dark blue at the right. This region of the diagram is labeled “exosphere greater than 700 k m.”
Earth’s atmosphere has five layers: the troposphere, the stratosphere, the mesosphere, the thermosphere, and the exosphere.

Climatology is the study of the climate, averaged weather conditions over long time periods, using atmospheric data. However, climatologists study patterns and effects that occur over decades, centuries, and millennia, rather than shorter time frames of hours, days, and weeks like meteorologists. Atmospheric science is an even broader field, combining meteorology, climatology, and other scientific disciplines that study the atmosphere.

Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Ut austin - principles of chemistry. OpenStax CNX. Mar 31, 2016 Download for free at http://legacy.cnx.org/content/col11830/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ut austin - principles of chemistry' conversation and receive update notifications?

Ask