<< Chapter < Page | Chapter >> Page > |
After reading this module, students should be able to
In Module Climate Processes; External and Internal Controls we saw the major drivers of the climate—the energy that comes from the Sun (insolation) and the properties of the planet that determine how long that energy stays in the Earth system (albedo, greenhouse gases). In this section, we will look at the recent natural changes in Earth's climate, and we will use these drivers to understand why the climate has changed.
The most recent period of Earth's geologic history—spanning the last 2.6 million years—is known as the Quaternary period . This is an important period for us because it encompasses the entire period over which humans have existed—our species evolved about 200,000 years ago. We will examine how the climate has changed over this period in detail. By understanding recent natural processes of climate change, we will be able to better understand why scientists attribute the currently observed changes in global climate as being the result of human activity.
How do we know about the Quaternary climate? After all, most of the period predates human existence, and we have only been recording the conditions of climate for a few centuries. Scientists are able to make informed judgments about the climates of the deep past by using proxy data . Proxy data is information about the climate that accumulates through natural phenomena. In the previous module, for example, we discussed how 60-million-year-old crocodile fossils have been found in North Dakota. This gives us indirect information about the climate of the period—that the climate of the region was warmer than it is today. Although not as precise as climate data recorded by instruments (such as thermometers), proxy data has been recovered from a diverse array of natural sources, and provides a surprisingly precise picture of climate change through deep time.
One highly detailed record of past climate conditions has been recovered from the great ice sheets of Greenland and Antarctica. These ice sheets are built by snow falling on the ice surface and being covered by subsequent snowfalls. The compressed snow is transformed into ice. It is so cold in these polar locations that the ice doesn't melt even in the summers, so the ice is able to build up over hundreds of thousands of years. Because the ice at lower depths was produced by progressively earlier snowfalls, the age of the ice increases with depth, and the youngest ice is at the surface. The Antarctic ice sheet is up to three miles thick. It takes a long time to build up this much ice, and the oldest ice found at the bottom of the Antarctica ice sheet is around 800,000 years old.
Notification Switch
Would you like to follow the 'Sustainability: a comprehensive foundation' conversation and receive update notifications?