<< Chapter < Page Chapter >> Page >

The three cycles described above have different periods, all of which are long by human standards: 20,000, 40,000, 100,000 and 400,000 years. If we look at the temperature data from ice and sediment cores, we see that these periods are reflected in Earth's climate. In the last million or so years, the 100,000-year eccentricity in the orbit has determined the timing of glaciations, and before that the 40,000-year axial tilt was dominant (Figure Five Myr Climate Change ). These cycles have been important for a long time; geologists have even found evidence of these periods in rocks that are hundreds of millions of years old.

But how do the Milankovitch Cycles change our climate? These orbital cycles do not have much impact on the total insolation the Earth receives: they change only the timing of that insolation. Since the total insolation does not change, these orbital variations have the power to make the Earth's seasons stronger or weaker, but the average annual temperature should stay the same. The best explanation for long term changes in average annual temperature is that the Milankovitch cycles initiate a positive feedback that amplifies the small change in insolation.

Insolation and the albedo feedback

Today, the Earth's orbit is not very eccentric (it is almost circular), but at the beginning of each of the recent ice age periods, the orbit was much more elliptical. This meant that the Earth was further away from the sun during the northern hemisphere summers, reducing the total insolation. Lower insolation meant that the summer months were milder than they would otherwise be, with cooler temperatures. Summer temperatures were also lower when the Earth's axial tilt was smaller, so the two different orbital parameters could reinforce one another's effects, in this case producing especially mild summers.

It is thought that these mild northern summers produced an albedo feedback that made the whole planet slip into an ice age. The northern hemisphere has continents near the poles—Europe, Asia, and North America. Today, these continents have largely temperate climates. During the winter, snow falls across much of the land (see Figure Surface of the Earth in February with Cloud Cover Removed in the previous module) only to melt during the summer months. If the summers are not hot enough to melt all the snow and ice, glaciers can advance, covering more of the land. Because ice has a high albedo, more sunlight is reflected than before, and the Earth is made cooler. This creates a positive feedback, as the cooler conditions allow the ice to advance further—which, in turn, increases the albedo and cools the Earth! Eventually, a large proportion of the northern continents became covered in ice (Figure 800pn Northern Icesheet ).

800pn Northern Icesheet
800pn Northern Icesheet Glacial coverage (light blue) of the northern hemisphere during the ice ages. Source: Hannes Grobe

This positive feedback process works in the other direction, as well. The interglacial periods are ushered in when the orbital parameters create summers that are unusually warm, which melts some of the ice. When the ice sheets shrink, the Earth's albedo decreases, which further warms the system. The giant northern ice sheets shriveled up in a few thousand years as warm summers and decreasing albedo worked together.

These cycles of alternating cooling and warming are also related to changes in the amount of greenhouse gases in the atmosphere. As we observed in Figure Vostok Petit Data , the climate contains higher levels of carbon dioxide during interglacial periods. Although this appears to make sense—carbon dioxide is a greenhouse gas, and so should produce warmer climates—it is also a puzzle, because it is not clear how changes in Milankovitch cycles lead to higher levels of carbon dioxide in the atmosphere. It is clear that these changes in carbon dioxide are important in making the change in temperature between interglacial and glacial periods so extreme. Several different hypotheses have been proposed to explain why glacial periods produce lower levels of carbon dioxide (it may be related to how the physical changes influence the Earth's ecosystems ability to absorb carbon dioxide: perhaps lower sea levels increase the nutrient supply in the ocean, or the drop in sea level destroys coral reefs, or iron-rich dust from new deserts fertilizes the oceans) but further work on this question remains to be done.

It is a concern for all of us that there are gaps in our understanding of how the feedbacks between insolation, albedo and greenhouse gases operate, as it makes it hard to predict what the consequences of any changes in the climate system might lead to. The current level of atmospheric carbon dioxide is unprecedented in human experience; it is at the highest level ever recorded in the Quaternary. Will the current increase in greenhouse gases lead to a positive feedback, warming the Earth even more?

Review questions

In the text, we discuss how polar ice has a smaller 18 O to 16 O ratio (that is, it has proportionally less heavy isotope water) than ocean water does. Hydrogen also has isotopes, the two most common being hydrogen-1 ( 1 H) and hydrogen-2 ( 2 H, also known as deuterium). Water is made up of both hydrogen and oxygen, and scientists analyze both elements when examining ice cores. Do you predict that polar ice sheets would have a higher ratio or a lower ratio of 1 H to 2 H than ocean water? Will colder global temperatures increase or decrease the amount of 2 H in polar ice?

Got questions? Get instant answers now!

In the text, we discuss how polar ice has a smaller 18 O to 16 O ratio (that is, it has proportionally less heavy-isotope water) when the climate is cooler. We also discuss how changes in the ratio of 18 O to 16 O ratio in sediment cores can also be used to determine the climate's average temperature. In ocean sediments, the ratio of 18 O to 16 O increases when the climate is cooler (that is, it has proportionally more heavy isotope water). Explain why isotope ratios in ocean sediment have the opposite reaction to those in polar ice.

Got questions? Get instant answers now!

There are three different ways in which the Earth's orbit changes through time. What combination of orbital parameters would be most likely to start an ice age? (Hint: Ice ages require cool northern summers.)

Got questions? Get instant answers now!

Resources

Do you want to know more about how ice cores are extracted and analyzed? NASA's Earth Observatory has details about the practical issues of drilling ice cores (deep ice needs to "relax" for as long as a year at the surface before being cut open – or it can shatter!) and how chemical data is interpreted. Go to (External Link) for an in-depth article with great links.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Sustainability: a comprehensive foundation. OpenStax CNX. Nov 11, 2013 Download for free at http://legacy.cnx.org/content/col11325/1.43
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Sustainability: a comprehensive foundation' conversation and receive update notifications?

Ask