<< Chapter < Page Chapter >> Page >
Three audiogram output graphs of three individuals’ left and right ear are shown. The graph is for hearing threshold level verses frequency in hertz. The hearing threshold level is on Y axis and frequency is along X axis. The first graph has two curve nearly parallel to X axis. The second graph is straight for some range then has a dip at four thousand hertz. The third graph has a falling curve toward X axis from a maximum value on Y axis.
Audiograms showing the threshold in intensity level versus frequency for three different individuals. Intensity level is measured relative to the normal threshold. The top left graph is that of a person with normal hearing. The graph to its right has a dip at 4000 Hz and is that of a child who suffered hearing loss due to a cap gun. The third graph is typical of presbycusis, the progressive loss of higher frequency hearing with age. Tests performed by bone conduction (brackets) can distinguish nerve damage from middle ear damage.

The hearing mechanism

The hearing mechanism involves some interesting physics. The sound wave that impinges upon our ear is a pressure wave. The ear is a transducer that converts sound waves into electrical nerve impulses in a manner much more sophisticated than, but analogous to, a microphone. [link] shows the gross anatomy of the ear with its division into three parts: the outer ear or ear canal; the middle ear, which runs from the eardrum to the cochlea; and the inner ear, which is the cochlea itself. The body part normally referred to as the ear is technically called the pinna.

The picture shows the anatomy of a human ear. All organs in the ear are labeled. There is a pinna or the outer end of the ear, followed by a long ear canal in the outer ear. The middle ear has the eardrum little arc shaped. There are small round and oval windows next to it. There are semicircular canals. In the inner ear are snail shell shaped cochlea and cochlea duct. There is a Eustachian tube that leads downward. There are cochlear nerve and vestibular nerves in the inner ear.
The illustration shows the gross anatomy of the human ear.

The outer ear, or ear canal, carries sound to the recessed protected eardrum. The air column in the ear canal resonates and is partially responsible for the sensitivity of the ear to sounds in the 2000 to 5000 Hz range. The middle ear converts sound into mechanical vibrations and applies these vibrations to the cochlea. The lever system of the middle ear takes the force exerted on the eardrum by sound pressure variations, amplifies it and transmits it to the inner ear via the oval window, creating pressure waves in the cochlea approximately 40 times greater than those impinging on the eardrum. (See [link] .) Two muscles in the middle ear (not shown) protect the inner ear from very intense sounds. They react to intense sound in a few milliseconds and reduce the force transmitted to the cochlea. This protective reaction can also be triggered by your own voice, so that humming while shooting a gun, for example, can reduce noise damage.

The schematic diagram of the middle ear’s system for converting sound pressure is shown. There is a pressure P one applied on the ear drum shown as a vertical line. The pressure P one travels along a horizontal line marked hammer as force F one. Then up a vertical line marked anvil and reaches a point marked pivot. Then this travels as a force F two along a horizontal line marked stirrup and reaches the oval window shown by a vertical line then passes by it as pressure P two. The pivot point has another support held vertically.
This schematic shows the middle ear’s system for converting sound pressure into force, increasing that force through a lever system, and applying the increased force to a small area of the cochlea, thereby creating a pressure about 40 times that in the original sound wave. A protective muscle reaction to intense sounds greatly reduces the mechanical advantage of the lever system.

[link] shows the middle and inner ear in greater detail. Pressure waves moving through the cochlea cause the tectorial membrane to vibrate, rubbing cilia (called hair cells), which stimulate nerves that send electrical signals to the brain. The membrane resonates at different positions for different frequencies, with high frequencies stimulating nerves at the near end and low frequencies at the far end. The complete operation of the cochlea is still not understood, but several mechanisms for sending information to the brain are known to be involved. For sounds below about 1000 Hz, the nerves send signals at the same frequency as the sound. For frequencies greater than about 1000 Hz, the nerves signal frequency by position. There is a structure to the cilia, and there are connections between nerve cells that perform signal processing before information is sent to the brain. Intensity information is partly indicated by the number of nerve signals and by volleys of signals. The brain processes the cochlear nerve signals to provide additional information such as source direction (based on time and intensity comparisons of sounds from both ears). Higher-level processing produces many nuances, such as music appreciation.

Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Basic physics for medical imaging. OpenStax CNX. Feb 17, 2014 Download for free at http://legacy.cnx.org/content/col11630/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Basic physics for medical imaging' conversation and receive update notifications?

Ask