<< Chapter < Page | Chapter >> Page > |
% Continuation of
[link] M = X<= 1;
Q = (t<=1)&(u<=1);
G = (t+u).*Q + 2*u.*(1-Q);EZx = sum(G.*P)./sum(P);
ezx = (1/12)*M.*(2*X.^3 - 30*X.^2 + 69*X -60)./(X-2) + (7/6)*X.*(1-M);plot(X,EZx,X,ezx)
tuappr: [0 2] [0 2]200 200 (2/13)*(t + 2*u).*(u<=min(2*t,3-t))
M = (t<=1)&(u>=1);
Q = (t+u).*M + 2*(1-M).*u.^2;EZx = sum(Q.*P)./sum(P);
N1 = X<= 1/2;
N2 = (X>1/2)&(X<=1);
N3 = X>1;
ezx = (32/9)*N1.*X.^2 + (1/36)*N2.*(80*X.^3 - 6*X.^2 - 5*X + 2)./X.^2 ...+ (1/9)*N3.*(-X.^3 + 15*X.^2 - 63.*X + 81);
plot(X,EZx,X,ezx)
tuappr: [0 2] [0 1]200 100 (t<=1).*(t.^2 + 2*u)./(t.^2 + 1) +3*u.^2.*(t>1)
M = u<=min(1,2-t);
G = M.*t + (1-M).*t.*u;EZx = sum(G.*P)./sum(P);
N = X<=1;
ezx = X.*N + (1-N).*(-(13/4)*X + 12*X.^2 - 12*X.^3 + 5*X.^4 - (3/4)*X.^5);plot(X,EZx,X,ezx)
Suppose uniform on 0 through n and conditionally uniform on 0 through i , given .
n = 50; X = 0:n; Y = 0:n;
P0 = zeros(n+1,n+1);for i = 0:n
P0(i+1,1:i+1) = (1/((n+1)*(i+1)))*ones(1,i+1);end
P = rot90(P0);jcalc: X Y P
- - - - - - - - - - -EY = dot(Y,PY)
EY = 12.5000 % Comparison with part (a): 50/4 = 12.5
Suppose uniform on 1 through n and conditionally uniform on 1 through i , given .
n = 50; X = 1:n; Y = 1:n;
P0 = zeros(n,n);for i = 1:n
P0(i,1:i) = (1/(n*i))*ones(1,i);end
P = rot90(P0);jcalc: P X Y
- - - - - - - - - - - -EY = dot(Y,PY)
EY = 13.2500 % Comparison with part (a): 53/4 = 13.25
Notification Switch
Would you like to follow the 'Applied probability' conversation and receive update notifications?