<< Chapter < Page Chapter >> Page >

f X Y ( t , u ) = 3 23 ( t + 2 u ) for 0 t 2 , 0 u max { 2 - t , t } (see Exercise 39 , and [link] ).

f X ( t ) = I [ 0 , 1 ] ( t ) 6 23 ( 2 - t ) + I ( 1 , 2 ] ( t ) 6 23 t 2
Z = I M ( X , Y ) ( X + Y ) + I M c ( X , Y ) 2 Y , M = { ( t , u ) : max ( t , u ) 1 }
Z = I M ( X , Y ) ( X + Y ) + I M c ( X , Y ) 2 Y , M = { ( t , u ) : max ( t , u ) 1 }
I M ( t , u ) = I [ 0 , 1 ] ( t ) I [ 0 , 1 ] ( u ) I M c ( t , u ) = I [ 0 , 1 ] ( t ) I [ 1 , 2 - t ] ( u ) + I ( 1 , 2 ] ( t ) I [ 0 , t ] ( u )
E [ Z | X = t ] = I [ 0 , 1 ] ( t ) 1 2 ( 2 - t ) 0 1 ( t + u ) ( t + 2 u ) d u + 1 ( 2 - t ) 1 2 - t u ( t + 2 u ) d u ] + I ( 1 , 2 ] ( t ) 2 E [ Y | X = t ]
= I [ 0 , 1 ] ( t ) 1 12 · 2 t 3 - 30 t 2 + 69 t - 60 t - 2 + I ( 1 , 2 ] ( t ) 7 6 2 t
% Continuation of [link] M = X<= 1; Q = (t<=1)&(u<=1); G = (t+u).*Q + 2*u.*(1-Q);EZx = sum(G.*P)./sum(P); ezx = (1/12)*M.*(2*X.^3 - 30*X.^2 + 69*X -60)./(X-2) + (7/6)*X.*(1-M);plot(X,EZx,X,ezx)
Got questions? Get instant answers now!

f X Y ( t , u ) = 2 13 ( t + 2 u ) , for 0 t 2 , 0 u min { 2 t , 3 - t } . (see Exercise 31 from "Problems on Mathematical Expectation", and [link] ).

f X ( t ) = I [ 0 , 1 ] ( t ) 12 13 t 2 + I ( 1 , 2 ] ( t ) 6 13 ( 3 - t )
Z = I M ( X , Y ) ( X + Y ) + I M c ( X , Y ) 2 Y 2 , M = { ( t , u ) : t 1 , u 1 }
Z = I M ( X , Y ) ( X + Y ) + I M c ( X , Y ) 2 Y 2 , M = { ( t , u ) : t 1 , u 1 }
I M ( t , u ) = I [ 0 , 1 ] ( t ) I [ 1 , 2 ] ( u ) I M c ( t , u ) = I [ 0 , 1 ] ( t ) I [ 0 , 1 ) ( u ) + I ( 1 , 2 ] ( t ) I [ 0 , 3 - t ] ( u )
E [ Z | X = t ] = I [ 0 , 1 / 2 ] ( t ) 1 6 t 2 0 2 t 2 u 2 ( t + 2 u ) d u +
I ( 1 / 2 , 1 ] ( t ) 1 6 t 2 0 1 2 u 2 ( t + 2 u ) d u + 1 6 t 2 1 2 t ( t + u ) ( t + 2 u ) d u + I ( 1 , 2 ] ( t ) 1 3 ( 3 - t ) 0 3 - t 2 u 2 ( t + 2 u ) d u
= I [ 0 , 1 / 2 ] ( t ) 32 9 t 2 + I ( 1 / 2 , 1 ] ( t ) 1 36 · 80 t 3 - 6 t 2 - 5 t + 2 t 2 + I ( 1 , 2 ] ( t ) 1 9 ( - t 3 + 15 t 2 - 63 t + 81 )
tuappr: [0 2] [0 2]200 200 (2/13)*(t + 2*u).*(u<=min(2*t,3-t)) M = (t<=1)&(u>=1); Q = (t+u).*M + 2*(1-M).*u.^2;EZx = sum(Q.*P)./sum(P); N1 = X<= 1/2; N2 = (X>1/2)&(X<=1); N3 = X>1; ezx = (32/9)*N1.*X.^2 + (1/36)*N2.*(80*X.^3 - 6*X.^2 - 5*X + 2)./X.^2 ...+ (1/9)*N3.*(-X.^3 + 15*X.^2 - 63.*X + 81); plot(X,EZx,X,ezx)
Got questions? Get instant answers now!

f X Y ( t , u ) = I [ 0 , 1 ] ( t ) 3 8 ( t 2 + 2 u ) + I ( 1 , 2 ] ( t ) 9 14 t 2 u 2 , for 0 u 1 . (see Exercise 32 from "Problems on Mathematical Expectation", and [link] ).

f X ( t ) = I [ 0 , 1 ] ( t ) 3 8 ( t 2 + 1 ) + I ( 1 , 2 ] ( t ) 3 14 t 2
Z = I M ( X , Y ) X + I M c ( X , Y ) X Y , M = { ( t , u ) : u min ( 1 , 2 - t ) }
Z = I M ( X , Y ) X + I M c ( X , Y ) X Y , M = { ( t , u ) : u min ( 1 , 2 - t ) }
E [ | X = t ] = I [ 0 , 1 ] ( t ) 0 1 t 3 + 2 t u t 2 + 1 d u + I ( 1 , 2 ] ( t ) 0 2 - t 3 t u 2 d u + 2 - t 1 3 t u 3 d u
= I [ 0 , 1 ] ( t ) t + I ( 1 , 2 ] ( t ) ( - 13 4 t + 12 t 2 - 12 t 3 + 5 t 4 - 3 4 t 5 )
tuappr: [0 2] [0 1]200 100 (t<=1).*(t.^2 + 2*u)./(t.^2 + 1) +3*u.^2.*(t>1) M = u<=min(1,2-t); G = M.*t + (1-M).*t.*u;EZx = sum(G.*P)./sum(P); N = X<=1; ezx = X.*N + (1-N).*(-(13/4)*X + 12*X.^2 - 12*X.^3 + 5*X.^4 - (3/4)*X.^5);plot(X,EZx,X,ezx)
Got questions? Get instant answers now!

Suppose X uniform on 0 through n and Y conditionally uniform on 0 through i , given X = i .

  1. Determine E [ Y ] from E [ Y | X = i ] .
  2. Determine the joint distribution for { X , Y } for n = 50 (see Example 7 from "Conditional Expectation, Regression" for a possible approach). Use jcalc to determine E [ Y ] ; compare with the theoretical value.
  1. E [ Y | X = i ] = i / 2 , so
    E [ Y ] = i = 0 n E [ Y | X = i ] P ( X = i ) = 1 n + 1 i = 1 n i / 2 = n / 4
  2. P ( X = i ) = 1 / ( n + 1 ) , 0 i n , P ( Y = k | X = i ) = 1 / ( i + 1 ) , 0 k i ; hence P ( X = i , Y = k ) = 1 / ( n + 1 ) ( i + 1 ) 0 i n , 0 k i . n = 50; X = 0:n; Y = 0:n; P0 = zeros(n+1,n+1);for i = 0:n P0(i+1,1:i+1) = (1/((n+1)*(i+1)))*ones(1,i+1);end P = rot90(P0);jcalc: X Y P - - - - - - - - - - -EY = dot(Y,PY) EY = 12.5000 % Comparison with part (a): 50/4 = 12.5
Got questions? Get instant answers now!

Suppose X uniform on 1 through n and Y conditionally uniform on 1 through i , given X = i .

  1. Determine E [ Y ] from E [ Y | X = i ] .
  2. Determine the joint distribution for { X , Y } for n = 50 (see Example 7 from "Conditional Expectation, Regression" for a possible approach). Use jcalc to determine E [ Y ] ; compare with the theoretical value.
  1. E [ Y | X = i ] = ( i + 1 ) / 2 , so
    E [ Y ] = i = 1 n E [ Y | X = i ] P ( X = i ) = 1 n i = 1 n i + 1 2 = n + 3 4
  2. P ( X = i ) = 1 / n , 1 i n , P ( Y = k | X = i ) = 1 / i , 1 k i ; hence P ( X = i , Y = k ) = 1 / n i 1 i n , 1 k i . n = 50; X = 1:n; Y = 1:n; P0 = zeros(n,n);for i = 1:n P0(i,1:i) = (1/(n*i))*ones(1,i);end P = rot90(P0);jcalc: P X Y - - - - - - - - - - - -EY = dot(Y,PY) EY = 13.2500 % Comparison with part (a): 53/4 = 13.25
Got questions? Get instant answers now!

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Applied probability. OpenStax CNX. Aug 31, 2009 Download for free at http://cnx.org/content/col10708/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Applied probability' conversation and receive update notifications?

Ask