<< Chapter < Page Chapter >> Page >

(See Exercise 18 from " Problems On Random Vectors and Joint Distributions", Exercise 28 from "Problems on Mathematical Expectation", and Exercise 28 from "Problems on Variance, Covariance, Linear Regression"). f X Y ( t , u ) = 3 23 ( t + 2 u ) for 0 t 2 , 0 u max { 2 - t , t } .

The regression line of Y on X is u = 1 . 0561 t - 0 . 2603 .

f X ( t ) = I [ 0 , 1 ] ( t ) 6 23 ( 2 - t ) + I ( 1 , 2 ] ( t ) 6 23 t 2

The regression line of Y on X is u = 1 . 0561 t - 0 . 2603 .

f Y | X ( u | t ) = I [ 0 , 1 ] ( t ) t + 2 u 2 ( 2 - t ) + I ( 1 , 2 ] ( t ) t + 2 u 2 t 2 0 u max ( 2 - t , t )
E [ Y | X = t ] = I [ 0 , 1 ] ( t ) 1 2 ( 2 - t ) 0 2 - t ( t u + 2 u 2 ) d u + I ( 1 , 2 ] ( t ) 1 2 t 2 0 t ( t u + 2 u 2 ) d u
= I [ 0 , 1 ] ( t ) 1 12 ( t - 2 ) ( t - 8 ) + I ( 1 , 2 ] ( t ) 7 12 t
tuappr: [0 2] [0 2]200 200 (3/23)*(t+2*u).*(u<=max(2-t,t)) EYx = sum(u.*P)./sum(P);M = X<=1; eyx = (1/12)*(X-2).*(X-8).*M + (7/12)*X.*(1-M);plot(X,EYx,X,eyx) % Plots quite close
Got questions? Get instant answers now!

(See Exercise 21 from " Problems On Random Vectors and Joint Distributions", Exercise 31 from "Problems on Mathematical Expectation", and Exercise 29 from "Problems on Variance, Covariance, Linear Regression"). f X Y ( t , u ) = 2 13 ( t + 2 u ) , for 0 t 2 , 0 u min { 2 t , 3 - t } .

The regression line of Y on X is u = - 0 . 1359 t + 1 . 0839 .

f X ( t ) = I [ 0 , 1 ] ( t ) 12 13 t 2 + I ( 1 , 2 ] ( t ) 6 13 ( 3 - t )

The regression line of Y on X is u = - 0 . 1359 t + 1 . 0839 .

f Y | X ( t | u ) = I [ 0 , 1 ] ( t ) t + 2 u 6 t 2 + I ( 1 , 2 ] ( t ) t + 2 u 3 ( 3 - t ) 0 u max ( 2 t , 3 - t )
E [ Y | X = t ] = I [ 0 , 1 ] ( t ) 1 6 t 2 0 t ( t u + 2 u 2 ) d u + I ( 1 , 2 ] ( t ) 1 3 ( 3 - t ) 0 3 - t ( t u + 2 u 2 ) d u
= I [ 0 , 1 ] ( t ) 11 9 t + I ( 1 , 2 ] ( t ) 1 18 ( t 2 - 15 t + 36 )
tuappr: [0 2] [0 2]200 200 (2/13)*(t+2*u).*(u<=min(2*t,3-t)) EYx = sum(u.*P)./sum(P);M = X<=1; eyx = (11/9)*X.*M + (1/18)*(X.^2 - 15*X + 36).*(1-M);plot(X,EYx,X,eyx) % Plots quite close
Got questions? Get instant answers now!

(See Exercise 22 from " Problems On Random Vectors and Joint Distributions", Exercise 32 from "Problems on Mathematical Expectation", and Exercise 30 from "Problems on Variance, Covariance, Linear Regression"). f X Y ( t , u ) = I [ 0 , 1 ] ( t ) 3 8 ( t 2 + 2 u ) + I ( 1 , 2 ] ( t ) 9 14 t 2 u 2 ,

for 0 u 1 .

The regression line of Y on X is u = 0 . 0817 t + 0 . 5989 .

f X ( t ) = I [ 0 , 1 ] ( t ) 3 8 ( t 2 + 1 ) + I ( 1 , 2 ] ( t ) 3 14 t 2

The regression line of Y on X is u = 0 . 0817 t + 0 . 5989 .

f Y | X ( t | u ) = I [ 0 , 1 ] ( t ) t 2 + 2 u t 2 + 1 + I ( 1 , 2 ] ( t ) 3 u 2 0 u 1
E [ Y | X = t ] = I [ 0 , 1 ] ( t ) 1 t 2 + 1 0 1 ( t 2 u + 2 u 2 ) d u + I ( 1 , 2 ] ( t ) 0 1 3 u 3 d u
= I [ 0 , 1 ] ( t ) 3 t 2 + 4 6 ( t 2 + 1 ) + I ( 1 , 2 ] ( t ) 3 4
tuappr: [0 2] [0 1]200 100 (3/8)*(t.^2 + 2*u).*(t<=1) + ... (9/14)*t.^2.*u.^2.*(t>1) EYx = sum(u.*P)./sum(P);M = X<=1; eyx = M.*(3*X.^2 + 4)./(6*(X.^2 + 1)) + (3/4)*(1 - M);plot(X,EYx,X,eyx) % Plots quite close
Got questions? Get instant answers now!

For the distributions in Exercises 12-16 below

  1. Determine analytically E [ Z | X = t ]
  2. Use a discrete approximation to calculate the same functions.

f X Y ( t , u ) = 3 88 ( 2 t + 3 u 2 ) for 0 t 2 , 0 u 1 + t (see Exercise 37 from "Problems on Mathematical Expectation", and [link] ).

f X ( t ) = 3 88 ( 1 + t ) ( 1 + 4 t + t 2 ) = 3 88 ( 1 + 5 t + 5 t 2 + t 3 ) , 0 t 2
Z = I [ 0 , 1 ] ( X ) 4 X + I ( 1 , 2 ] ( X ) ( X + Y )

Z = I M ( X ) 4 X + I N ( X ) ( X + Y ) , Use of linearity, (CE8) , and (CE10) gives

E [ Z | X = t ] = I M ( t ) 4 t + I N ( t ) ( t + E [ Y | X = t ] )
= I M ( t ) 4 t + I N ( t ) t + ( t + 1 ) ( t + 3 ) ( 3 t + 1 ) 4 ( 1 + 4 t + t 2 )
% Continuation of [link] G = 4*t.*(t<=1) + (t + u).*(t>1); EZx = sum(G.*P)./sum(P);M = X<=1; ezx = 4*X.*M + (X + (X+1).*(X+3).*(3*X+1)./(4*(1 + 4*X + X.^2))).*(1-M);plot(X,EZx,X,ezx) % Plots nearly indistinguishable
Got questions? Get instant answers now!

f X Y ( t , u ) = 24 11 t u for 0 t 2 , 0 u min { 1 , 2 - t } (see Exercise 38 from "Problems on Mathematical Expectaton", [link] ).

f X ( t ) = I [ 0 , 1 ] ( t ) 12 11 t + I ( 1 , 2 ] ( t ) 12 11 t ( 2 - t ) 2
Z = I M ( X , Y ) 1 2 X + I M c ( X , Y ) Y 2 , M = { ( t , u ) : u > t }
Z = I M ( X , Y ) 1 2 X + I M c ( X , Y ) Y 2 , M = { ( t , u ) : u > t }
I M ( t , u ) = I [ 0 , 1 ] ( t ) I [ t , 1 ] ( u ) I M c ( t , u ) = I [ 0 , 1 ] ( t ) I [ 0 , t ] ( u ) + I ( 1 , 2 ] ( t ) I [ 0 , 2 - t ] ( u )
E [ Z | X = t ] = I [ 0 , 1 ] ( t ) t 2 t 1 2 u d u + 0 t u 2 · 2 u d u + I ( 1 , 2 ] ( t ) 0 2 - t u 2 · 2 u ( 2 - t ) 2 d u
= I [ 0 , 1 ] ( t ) 1 2 t ( 1 - t 2 + t 3 ) + I ( 1 , 2 ] ( t ) 1 2 ( 2 - t ) 2
% Continuation of [link] Q = u>t; G = (1/2)*t.*Q + u.^2.*(1-Q);EZx = sum(G.*P)./sum(P); M = X<= 1; ezx = (1/2)*X.*(1-X.^2+X.^3).*M + (1/2)*(2-X).^2.*(1-M);plot(X,EZx,X,ezx) % Plots nearly indistinguishable
Got questions? Get instant answers now!

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Applied probability. OpenStax CNX. Aug 31, 2009 Download for free at http://cnx.org/content/col10708/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Applied probability' conversation and receive update notifications?

Ask