<< Chapter < Page Chapter >> Page >
  • Describe the effects of a magnetic force on a current-carrying conductor.
  • Calculate the magnetic force on a current-carrying conductor.

Because charges ordinarily cannot escape a conductor, the magnetic force on charges moving in a conductor is transmitted to the conductor itself.

A diagram showing a circuit with current I running through it. One section of the wire passes between the north and south poles of a magnet with a diameter l. Magnetic field B is oriented toward the right, from the north to the south pole of the magnet, across the wire. The current runs out of the page. The force on the wire is directed up. An illustration of the right hand rule 1 shows the thumb pointing out of the page in the direction of the current, the fingers pointing right in the direction of B, and the F vector pointing up and away from the palm.
The magnetic field exerts a force on a current-carrying wire in a direction given by the right hand rule 1 (the same direction as that on the individual moving charges). This force can easily be large enough to move the wire, since typical currents consist of very large numbers of moving charges.

We can derive an expression for the magnetic force on a current by taking a sum of the magnetic forces on individual charges. (The forces add because they are in the same direction.) The force on an individual charge moving at the drift velocity v d is given by F = qv d B sin θ . Taking B size 12{B} {} to be uniform over a length of wire l and zero elsewhere, the total magnetic force on the wire is then F = ( qv d B sin θ ) ( N ) size 12{F= \( ital "qv" rSub { size 8{d} } B"sin"θ \) \( N \) } {} , where N size 12{N} {} is the number of charge carriers in the section of wire of length l size 12{l} {} . Now, N = nV size 12{N= ital "nV"} {} , where n size 12{n} {} is the number of charge carriers per unit volume and V size 12{V} {} is the volume of wire in the field. Noting that V = Al size 12{V= ital "Al"} {} , where A size 12{A} {} is the cross-sectional area of the wire, then the force on the wire is F = ( qv d B sin θ ) ( nAl ) . Gathering terms,

F = ( nqAv d ) lB sin θ . size 12{F= \( ital "nqAv" rSub { size 8{d} } \) ital "lB""sin"θ} {}

Because nqAv d = I size 12{ ital "nqAv" rSub { size 8{d} } =I} {} (see Current ),

F = IlB sin θ size 12{F= ital "IlB""sin"θ} {}

is the equation for magnetic force on a length l of wire carrying a current I in a uniform magnetic field B , as shown in [link] . If we divide both sides of this expression by l , we find that the magnetic force per unit length of wire in a uniform field is F l = IB sin θ size 12{ { {F} over {l} } = ital "IB""sin"θ} {} . The direction of this force is given by RHR-1, with the thumb in the direction of the current I size 12{I} {} . Then, with the fingers in the direction of B size 12{B} {} , a perpendicular to the palm points in the direction of F size 12{F} {} , as in [link] .

Illustration of the right hand rule 1 showing the thumb pointing right in the direction of current I, the fingers pointing into the page with magnetic field B, and the force directed up, away from the palm.
The force on a current-carrying wire in a magnetic field is F = IlB sin θ size 12{F= ital "IlB""sin"θ} {} . Its direction is given by RHR-1.

Calculating magnetic force on a current-carrying wire: a strong magnetic field

Calculate the force on the wire shown in [link] , given B = 1 . 50 T size 12{B=1 "." "50"" T"} {} , l = 5 . 00 cm size 12{l=5 "." "00"" cm"} {} , and I = 20 . 0 A size 12{I="20" "." 0 A} {} .

Strategy

The force can be found with the given information by using F = IlB sin θ size 12{F= ital "IlB""sin"θ} {} and noting that the angle θ size 12{θ} {} between I size 12{I} {} and B size 12{B} {} is 90º , so that sin θ = 1 .

Solution

Entering the given values into F = IlB sin θ size 12{F= ital "IlB""sin"θ} {} yields

F = IlB sin θ = 20 .0 A 0 . 0500 m 1 . 50 T 1 . size 12{F= ital "IlB""sin"θ= left ("20" "." 0" A" right ) left (0 "." "0500"" m" right ) left (1 "." "50"" T" right ) left (1 right )} {}

The units for tesla are 1 T = N A m size 12{"1 T"= { {N} over {A cdot m} } } {} ; thus,

F = 1 . 50 N. size 12{F=1 "." "50"" N"} {}

Discussion

This large magnetic field creates a significant force on a small length of wire.

Magnetic force on current-carrying conductors is used to convert electric energy to work. (Motors are a prime example—they employ loops of wire and are considered in the next section.) Magnetohydrodynamics (MHD) is the technical name given to a clever application where magnetic force pumps fluids without moving mechanical parts. (See [link] .)

Diagram showing a cylinder of fluid of diameter l placed between the north and south poles of a magnet. The north pole is to the left. The south pole is to the right. The cylinder is oriented out of the page. The magnetic field is oriented toward the right, from the north to the south pole, and across the cylinder of fluid. A current-carrying wire runs through the fluid cylinder with current I oriented downward, perpendicular to the cylinder. Negative charges within the fluid have a velocity vector pointing up. Positive charges within the fluid have a velocity vector pointing downward. The force on the fluid is out of the page. An illustration of the right hand rule 1 shows the thumb pointing downward with the current, the fingers pointing to the right with B, and force F oriented out of the page, away from the palm.
Magnetohydrodynamics. The magnetic force on the current passed through this fluid can be used as a nonmechanical pump.

A strong magnetic field is applied across a tube and a current is passed through the fluid at right angles to the field, resulting in a force on the fluid parallel to the tube axis as shown. The absence of moving parts makes this attractive for moving a hot, chemically active substance, such as the liquid sodium employed in some nuclear reactors. Experimental artificial hearts are testing with this technique for pumping blood, perhaps circumventing the adverse effects of mechanical pumps. (Cell membranes, however, are affected by the large fields needed in MHD, delaying its practical application in humans.) MHD propulsion for nuclear submarines has been proposed, because it could be considerably quieter than conventional propeller drives. The deterrent value of nuclear submarines is based on their ability to hide and survive a first or second nuclear strike. As we slowly disassemble our nuclear weapons arsenals, the submarine branch will be the last to be decommissioned because of this ability (See [link] .) Existing MHD drives are heavy and inefficient—much development work is needed.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introductory physics - for kpu phys 1100 (2015 edition). OpenStax CNX. May 30, 2015 Download for free at http://legacy.cnx.org/content/col11588/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introductory physics - for kpu phys 1100 (2015 edition)' conversation and receive update notifications?

Ask