<< Chapter < Page Chapter >> Page >
Diagram showing a zoom in to a magnetohydrodynamic propulsion system on a nuclear submarine. Liquid moves through the thruster duct, which is oriented out of the page. Magnetic fields emanate from the coils and pass through a duct. The magnetic flux is oriented up, perpendicular to the duct. Each duct is wrapped in saddle-shaped superconducting coils. An electric current runs to the right, through the liquid and perpendicular to the velocity of the liquid. The electric current flows between a pair of electrodes inside each thruster duct. A repulsive interaction between the magnetic field and electric current drives water through the duct. An illustration of the right hand rule shows the thumb pointing to the right with the electric current. The fingers point up with the magnetic field. The force on the liquid is oriented out of the page, away from the palm.
An MHD propulsion system in a nuclear submarine could produce significantly less turbulence than propellers and allow it to run more silently. The development of a silent drive submarine was dramatized in the book and the film The Hunt for Red October .

Section summary

  • The magnetic force on current-carrying conductors is given by
    F = IlB sin θ, size 12{F= ital "IlB""sin"θ} {}
    where I size 12{I} {} is the current, l size 12{l} {} is the length of a straight conductor in a uniform magnetic field B size 12{B} {} , and θ size 12{θ} {} is the angle between I size 12{I} {} and B size 12{B} {} . The force follows RHR-1 with the thumb in the direction of I size 12{I} {} .

Conceptual questions

Draw a sketch of the situation in [link] showing the direction of electrons carrying the current, and use RHR-1 to verify the direction of the force on the wire.

Verify that the direction of the force in an MHD drive, such as that in [link] , does not depend on the sign of the charges carrying the current across the fluid.

Why would a magnetohydrodynamic drive work better in ocean water than in fresh water? Also, why would superconducting magnets be desirable?

Which is more likely to interfere with compass readings, AC current in your refrigerator or DC current when you start your car? Explain.

Problems&Exercises

What is the direction of the magnetic force on the current in each of the six cases in [link] ?

Figure a shows the magnetic field B out of the page and the current I downward. Figure b shows B toward the right and I upward. Figure c shows B into the page and I toward the right. Figure d shows B toward the right and I toward the left. Figure e shows B upward and I into the page. Figure f shows B toward the left and I out of the page.

(a) west (left)

(b) into page

(c) north (up)

(d) no force

(e) east (right)

(f) south (down)

What is the direction of a current that experiences the magnetic force shown in each of the three cases in [link] , assuming the current runs perpendicular to B size 12{B} {} ?

Figure a shows magnetic field B out of the page and force F upward. Figure b shows B toward the right and F upward. Figure c shows B into the page and F toward the left.

What is the direction of the magnetic field that produces the magnetic force shown on the currents in each of the three cases in [link] , assuming B size 12{B} {} is perpendicular to I size 12{I} {} ?

Figure a show the current I vector pointing upward and the force F vector pointing left. Figure b shows the current vector pointing down and F directed into the page. Figure c shows the current pointing left and force pointing up.

(a) into page

(b) west (left)

(c) out of page

(a) What is the force per meter on a lightning bolt at the equator that carries 20,000 A perpendicular to the Earth’s 3 . 00 × 10 5 -T size 12{3 "." "00" times "10" rSup { size 8{ - 5} } "-T"} {} field? (b) What is the direction of the force if the current is straight up and the Earth’s field direction is due north, parallel to the ground?

(a) A DC power line for a light-rail system carries 1000 A at an angle of 30.0º to the Earth’s 5.00 × 10 5 -T size 12{5 "." "00" times "10" rSup { size 8{ - 5} } "-T"} {} field. What is the force on a 100-m section of this line? (b) Discuss practical concerns this presents, if any.

(a) 2.50 N

(b) This is about half a pound of force per 100 m of wire, which is much less than the weight of the wire itself. Therefore, it does not cause any special concerns.

What force is exerted on the water in an MHD drive utilizing a 25.0-cm-diameter tube, if 100-A current is passed across the tube that is perpendicular to a 2.00-T magnetic field? (The relatively small size of this force indicates the need for very large currents and magnetic fields to make practical MHD drives.)

A wire carrying a 30.0-A current passes between the poles of a strong magnet that is perpendicular to its field and experiences a 2.16-N force on the 4.00 cm of wire in the field. What is the average field strength?

1.80 T

(a) A 0.750-m-long section of cable carrying current to a car starter motor makes an angle of 60º with the Earth’s 5 . 50 × 10 5 T field. What is the current when the wire experiences a force of 7.00 × 10 3 N ? (b) If you run the wire between the poles of a strong horseshoe magnet, subjecting 5.00 cm of it to a 1.75-T field, what force is exerted on this segment of wire?

(a) What is the angle between a wire carrying an 8.00-A current and the 1.20-T field it is in if 50.0 cm of the wire experiences a magnetic force of 2.40 N? (b) What is the force on the wire if it is rotated to make an angle of 90º size 12{"90"°} {} with the field?

(a) 30º size 12{"30"°} {}

(b) 4.80 N

The force on the rectangular loop of wire in the magnetic field in [link] can be used to measure field strength. The field is uniform, and the plane of the loop is perpendicular to the field. (a) What is the direction of the magnetic force on the loop? Justify the claim that the forces on the sides of the loop are equal and opposite, independent of how much of the loop is in the field and do not affect the net force on the loop. (b) If a current of 5.00 A is used, what is the force per tesla on the 20.0-cm-wide loop?

Diagram showing a rectangular loop of wire, one end of which is within a magnetic field that is present within a circular area. The field B is oriented out of the page. The current I runs in the plane of the page, down the left side of the circuit, toward the right at the bottom of the circuit, and upward on the right side of the circuit. The length of the segment of wire that runs left to right at the bottom of the circuit is twenty centimeters long.
A rectangular loop of wire carrying a current is perpendicular to a magnetic field. The field is uniform in the region shown and is zero outside that region.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introductory physics - for kpu phys 1100 (2015 edition). OpenStax CNX. May 30, 2015 Download for free at http://legacy.cnx.org/content/col11588/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introductory physics - for kpu phys 1100 (2015 edition)' conversation and receive update notifications?

Ask