<< Chapter < Page Chapter >> Page >

Mirrors

A mirror is a highly reflective surface. The most common mirrors are flat and are known as plane mirrors . Household mirrors are plane mirrors. They are made of a flat piece of glass with a thin layer of silver nitrate or aluminium on the back. However, other mirrors are curved and are either convex mirrors or are concave mirrors . The reflecting properties of all three types of mirrors will be discussed in this section.

Image formation

Image

An image is a representation of an object formed by a mirror or lens. Light from the image is seen.

An object formed in a mirror is real and upright.

If you place a candle in front of a mirror, you now see two candles. The actual, physical candle is called the object and the picture you see in the mirror is called the image. The object is the source of the incident rays. The image is the picture that is formed by the reflected rays.

The object could be an actual source that emits light, such as a light bulb or a candle. More commonly, the object reflects light from another source. When you look at your face in the mirror, your face does not emit light. Instead, light from a light bulb or from the sun reflects off your face and then hits the mirror. However, in working with light rays, it is easiest to pretend the light is coming from the object.

An image formed by reflection may be real or virtual. A real image occurs when light rays actually intersect at the image. A real image is inverted, or upside down. A virtual image occurs when light rays do not actually meet at the image. Instead, you "see" the image because your eye projects light rays backward. You are fooled into seeing an image! A virtual image is erect, or right side up (upright).

You can tell the two types apart by putting a screen at the location of the image. A real image can be formed on the screen because the light rays actually meet there. A virtual image cannot be seen on a screen, since it is not really there.

To describe objects and images, we need to know their locations and their sizes. The distance from the mirror to the object is the object distance , d o .

The distance from the mirror to the image is the image distance , d i .

Plane mirrors

Investigation : image formed by a mirror

  1. Stand one step away from a large mirror
  2. What do you observe in the mirror? This is called your image.
  3. What size is your image? Bigger, smaller or the same size as you?
  4. How far is your image from you? How far is your image from the mirror?
  5. Is your image upright or upside down?
  6. Take one step backwards. What does your image do? How far are you away from your image?
  7. If it were a real object, which foot would the image of you right show fit?
An image in a mirror is virtual, upright, the same size and inverted front to back.

When you look into a mirror, you see an image of yourself.

The image created in the mirror has the following properties:

  1. The image is virtual .
  2. The image is the same distance behind the mirror as the object is in front of the mirror.
  3. The image is inverted front to back.
  4. The image is the same size as the object.
  5. The image is upright.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 10 physical science. OpenStax CNX. Aug 29, 2011 Download for free at http://cnx.org/content/col11245/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 10 physical science' conversation and receive update notifications?

Ask