<< Chapter < Page Chapter >> Page >
  • State Hooke’s law.
  • Explain Hooke’s law using graphical representation between deformation and applied force.
  • Discuss the three types of deformations such as changes in length, sideways shear and changes in volume.
  • Describe with examples the young’s modulus, shear modulus and bulk modulus.
  • Determine the change in length given mass, length and radius.

We now move from consideration of forces that affect the motion of an object (such as friction and drag) to those that affect an object’s shape. If a bulldozer pushes a car into a wall, the car will not move but it will noticeably change shape. A change in shape due to the application of a force is a deformation    . Even very small forces are known to cause some deformation. For small deformations, two important characteristics are observed. First, the object returns to its original shape when the force is removed—that is, the deformation is elastic for small deformations. Second, the size of the deformation is proportional to the force—that is, for small deformations, Hooke’s law is obeyed. In equation form, Hooke’s law    is given by

F = k Δ L , size 12{F=kΔL} {}

where Δ L size 12{ΔL} {} is the amount of deformation (the change in length, for example) produced by the force F size 12{F} {} , and k size 12{k} {} is a proportionality constant that depends on the shape and composition of the object and the direction of the force. Note that this force is a function of the deformation Δ L size 12{ΔL} {} —it is not constant as a kinetic friction force is. Rearranging this to

Δ L = F k size 12{ΔL= { {F} over {k} } } {}

makes it clear that the deformation is proportional to the applied force. [link] shows the Hooke’s law relationship between the extension Δ L size 12{ΔL} {} of a spring or of a human bone. For metals or springs, the straight line region in which Hooke’s law pertains is much larger. Bones are brittle and the elastic region is small and the fracture abrupt. Eventually a large enough stress to the material will cause it to break or fracture. Tensile strength is the breaking stress that will cause permanent deformation or fracture of a material.

Hooke’s law

F = kΔL , size 12{F=kΔL} {}

where Δ L size 12{ΔL} {} is the amount of deformation (the change in length, for example) produced by the force F size 12{F} {} , and k size 12{k} {} is a proportionality constant that depends on the shape and composition of the object and the direction of the force.

Δ L = F k size 12{ΔL= { {F} over {k} } } {}
Line graph of change in length versus applied force. The line has a constant positive slope from the origin in the region where Hooke’s law is obeyed. The slope then decreases, with a lower, still positive slope until the end of the elastic region. The slope then increases dramatically in the region of permanent deformation until fracturing occurs.
A graph of deformation Δ L size 12{ΔL} {} versus applied force F size 12{F} {} . The straight segment is the linear region where Hooke’s law is obeyed. The slope of the straight region is 1 k size 12{ { {1} over {k} } } {} . For larger forces, the graph is curved but the deformation is still elastic— Δ L size 12{ΔL} {} will return to zero if the force is removed. Still greater forces permanently deform the object until it finally fractures. The shape of the curve near fracture depends on several factors, including how the force F size 12{F} {} is applied. Note that in this graph the slope increases just before fracture, indicating that a small increase in F size 12{F} {} is producing a large increase in L size 12{L} {} near the fracture.

The proportionality constant k size 12{k} {} depends upon a number of factors for the material. For example, a guitar string made of nylon stretches when it is tightened, and the elongation Δ L size 12{ΔL} {} is proportional to the force applied (at least for small deformations). Thicker nylon strings and ones made of steel stretch less for the same applied force, implying they have a larger k size 12{k} {} (see [link] ). Finally, all three strings return to their normal lengths when the force is removed, provided the deformation is small. Most materials will behave in this manner if the deformation is less than about 0.1% or about 1 part in 10 3 size 12{"10" rSup { size 8{3} } } {} .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics 110 at une. OpenStax CNX. Aug 29, 2013 Download for free at http://legacy.cnx.org/content/col11566/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 110 at une' conversation and receive update notifications?

Ask