<< Chapter < Page Chapter >> Page >

where B is the bulk modulus (see [link] ), V 0 size 12{V rSub { size 8{0} } } {} is the original volume, and F A size 12{ { {F} over {A} } } {} is the force per unit area applied uniformly inward on all surfaces. Note that no bulk moduli are given for gases.

What are some examples of bulk compression of solids and liquids? One practical example is the manufacture of industrial-grade diamonds by compressing carbon with an extremely large force per unit area. The carbon atoms rearrange their crystalline structure into the more tightly packed pattern of diamonds. In nature, a similar process occurs deep underground, where extremely large forces result from the weight of overlying material. Another natural source of large compressive forces is the pressure created by the weight of water, especially in deep parts of the oceans. Water exerts an inward force on all surfaces of a submerged object, and even on the water itself. At great depths, water is measurably compressed, as the following example illustrates.

Calculating change in volume with deformation: how much is water compressed at great ocean depths?

Calculate the fractional decrease in volume ( Δ V V 0 size 12{ { {ΔV} over {V rSub { size 8{0} } } } } {} ) for seawater at 5.00 km depth, where the force per unit area is 5 . 00 × 10 7 N / m 2 size 12{5 "." "00" times "10" rSup { size 8{7} } N/m rSup { size 8{2} } } {} .

Strategy

Equation Δ V = 1 B F A V 0 is the correct physical relationship. All quantities in the equation except Δ V V 0 are known.

Solution

Solving for the unknown Δ V V 0 gives

Δ V V 0 = 1 B F A . size 12{ { {ΔV} over {V rSub { size 8{0} } } } = { {1} over {B} } { {F} over {A} } } {}

Substituting known values with the value for the bulk modulus B from [link] ,

Δ V V 0 = 5.00 × 10 7 N/m 2 2 . 2 × 10 9 N/m 2 = 0.023 = 2.3%.

Discussion

Although measurable, this is not a significant decrease in volume considering that the force per unit area is about 500 atmospheres (1 million pounds per square foot). Liquids and solids are extraordinarily difficult to compress.

Got questions? Get instant answers now!

Conversely, very large forces are created by liquids and solids when they try to expand but are constrained from doing so—which is equivalent to compressing them to less than their normal volume. This often occurs when a contained material warms up, since most materials expand when their temperature increases. If the materials are tightly constrained, they deform or break their container. Another very common example occurs when water freezes. Water, unlike most materials, expands when it freezes, and it can easily fracture a boulder, rupture a biological cell, or crack an engine block that gets in its way.

Other types of deformations, such as torsion or twisting, behave analogously to the tension, shear, and bulk deformations considered here.

Section summary

  • Hooke’s law is given by
    F = k Δ L , size 12{F=kΔL} {}

    where Δ L size 12{ΔL} {} is the amount of deformation (the change in length), F size 12{F} {} is the applied force, and k size 12{k} {} is a proportionality constant that depends on the shape and composition of the object and the direction of the force. The relationship between the deformation and the applied force can also be written as

    Δ L = 1 Y F A L 0 , size 12{ΔL= { {1} over {Y} } { {F} over {A} } L rSub { size 8{0} } } {}

    where Y size 12{Y} {} is Young’s modulus , which depends on the substance, A size 12{A} {} is the cross-sectional area, and L 0 size 12{L rSub { size 8{0} } } {} is the original length.

  • The ratio of force to area, F A size 12{ { {F} over {A} } } {} , is defined as stress , measured in N/m 2 .
  • The ratio of the change in length to length, Δ L L 0 size 12{ { {ΔL} over {L rSub { size 8{0} } } } } {} , is defined as strain (a unitless quantity). In other words,
    stress = Y × strain . size 12{"stress"=Y times "strain"} {}
  • The expression for shear deformation is
    Δ x = 1 S F A L 0 , size 12{Δx= { {1} over {S} } { {F} over {A} } L rSub { size 8{0} } } {}

    where S is the shear modulus and F is the force applied perpendicular to L 0 and parallel to the cross-sectional area A .

  • The relationship of the change in volume to other physical quantities is given by
    Δ V = 1 B F A V 0 , size 12{ΔV= { {1} over {B} } { {F} over {A} } V rSub { size 8{0} } } {}

    where B is the bulk modulus, V 0 is the original volume, and F A size 12{ { {F} over {A} } } {} is the force per unit area applied uniformly inward on all surfaces.

Questions & Answers

material that allows electric current to pass through
Deng Reply
material which don't allow electric current is called
Deng
insulators
Covenant
how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask