<< Chapter < Page Chapter >> Page >

These energies must be equal, because there is no other source and no other destination for energy in the circuit. Thus, qV = qV 1 + qV 2 + qV 3 size 12{ ital "qV"= ital "qV" rSub { size 8{1} } + ital "qV" rSub { size 8{2} } + ital "qV" rSub { size 8{3} } } {} . The charge q size 12{q} {} cancels, yielding V = V 1 + V 2 + V 3 size 12{V=V rSub { size 8{1} } +V rSub { size 8{2} } +V rSub { size 8{3} } } {} , as stated. (Note that the same amount of charge passes through the battery and each resistor in a given amount of time, since there is no capacitance to store charge, there is no place for charge to leak, and charge is conserved.)

Now substituting the values for the individual voltages gives

V = IR 1 + IR 2 + IR 3 = I ( R 1 + R 2 + R 3 ) . size 12{V= ital "IR" rSub { size 8{1} } + ital "IR" rSub { size 8{2} } + ital "IR" rSub { size 8{3} } =I \( R rSub { size 8{1} } +R rSub { size 8{2} } +R rSub { size 8{3} } \) } {}

Note that for the equivalent single series resistance R s , we have

V = IR s .

This implies that the total or equivalent series resistance R s of three resistors is R s = R 1 + R 2 + R 3 size 12{R rSub { size 8{s} } =R rSub { size 8{1} } +R rSub { size 8{2} } +R rSub { size 8{3} } } {} .

This logic is valid in general for any number of resistors in series; thus, the total resistance R s of a series connection is

R s = R 1 + R 2 + R 3 + . . . , size 12{R rSub { size 8{s} } =R rSub { size 8{1} } +R rSub { size 8{2} } +R rSub { size 8{3} } + "." "." "." } {}

as proposed. Since all of the current must pass through each resistor, it experiences the resistance of each, and resistances in series simply add up.

Calculating resistance, current, voltage drop, and power dissipation: analysis of a series circuit

Suppose the voltage output of the battery in [link] is 12 . 0 V size 12{"12" "." 0`V} {} , and the resistances are R 1 = 1 . 00 Ω size 12{R rSub { size 8{1} } =1 "." "00" %OMEGA } {} , R 2 = 6 . 00 Ω size 12{R rSub { size 8{2} } =6 "." "00" %OMEGA } {} , and R 3 = 13 . 0 Ω size 12{R rSub { size 8{3} } ="13" "." 0 %OMEGA } {} . (a) What is the total resistance? (b) Find the current. (c) Calculate the voltage drop in each resistor, and show these add to equal the voltage output of the source. (d) Calculate the power dissipated by each resistor. (e) Find the power output of the source, and show that it equals the total power dissipated by the resistors.

Strategy and Solution for (a)

The total resistance is simply the sum of the individual resistances, as given by this equation:

R s = R 1 + R 2 + R 3 = 1.00 Ω + 6.00 Ω + 13.0 Ω = 20.0 Ω.

Strategy and Solution for (b)

The current is found using Ohm’s law, V = IR size 12{V= ital "IR"} {} . Entering the value of the applied voltage and the total resistance yields the current for the circuit:

I = V R s = 12 . 0 V 20 . 0 Ω = 0 . 600 A . size 12{I= { {V} over {R rSub { size 8{s} } } } = { {"12" "." 0" V"} over {"20" "." "0 " %OMEGA } } =0 "." "600"" A"} {}

Strategy and Solution for (c)

The voltage—or IR size 12{ ital "IR"} {} drop—in a resistor is given by Ohm’s law. Entering the current and the value of the first resistance yields

V 1 = IR 1 = ( 0 . 600 A ) ( 1 . 0 Ω ) = 0 . 600 V . size 12{V rSub { size 8{1} } = ital "IR" rSub { size 8{1} } = \( 0 "." "600"" A" \) \( 1 "." 0 %OMEGA \) =0 "." "600"" V"} {}

Similarly,

V 2 = IR 2 = ( 0 . 600 A ) ( 6 . 0 Ω ) = 3 . 60 V size 12{V rSub { size 8{2} } = ital "IR" rSub { size 8{2} } = \( 0 "." "600"" A" \) \( 6 "." 0 %OMEGA \) =3 "." "60"" V"} {}

and

V 3 = IR 3 = ( 0 . 600 A ) ( 13 . 0 Ω ) = 7 . 80 V . size 12{V rSub { size 8{3} } = ital "IR" rSub { size 8{3} } = \( 0 "." "600"" A" \) \( "13" "." 0 %OMEGA \) =7 "." "80"" V"} {}

Discussion for (c)

The three IR size 12{ ital "IR"} {} drops add to 12 . 0 V size 12{"12" "." 0`V} {} , as predicted:

V 1 + V 2 + V 3 = ( 0 . 600 + 3 . 60 + 7 . 80 ) V = 12 . 0 V . size 12{V rSub { size 8{1} } +V rSub { size 8{2} } +V rSub { size 8{3} } = \( 0 "." "600" +3 "." "60"+7 "." "80" \) " V"="12" "." 0" V"} {}

Strategy and Solution for (d)

The easiest way to calculate power in watts (W) dissipated by a resistor in a DC circuit is to use Joule’s law    , P = IV size 12{P= ital "IV"} {} , where P size 12{P} {} is electric power. In this case, each resistor has the same full current flowing through it. By substituting Ohm’s law V = IR size 12{V= ital "IR"} {} into Joule’s law, we get the power dissipated by the first resistor as

P 1 = I 2 R 1 = ( 0 . 600 A ) 2 ( 1 . 00 Ω ) = 0 . 360 W . size 12{P rSub { size 8{1} } =I rSup { size 8{2} } R rSub { size 8{1} } = \( 0 "." "600"" A" \) rSup { size 8{2} } \( 1 "." "00" %OMEGA \) =0 "." "360"" W"} {}

Similarly,

P 2 = I 2 R 2 = ( 0 . 600 A ) 2 ( 6 . 00 Ω ) = 2 . 16 W size 12{P rSub { size 8{2} } =I rSup { size 8{2} } R rSub { size 8{2} } = \( 0 "." "600"" A" \) rSup { size 8{2} } \( 6 "." "00" %OMEGA \) =2 "." "16"" W"} {}

and

P 3 = I 2 R 3 = ( 0 . 600 A ) 2 ( 13 . 0 Ω ) = 4 . 68 W . size 12{P rSub { size 8{3} } =I rSup { size 8{2} } R rSub { size 8{3} } = \( 0 "." "600"" A" \) rSup { size 8{2} } \( "13" "." 0 %OMEGA \) =4 "." "68"" W"} {}

Discussion for (d)

Power can also be calculated using either P = IV size 12{P= ital "IV"} {} or P = V 2 R size 12{P= { {V rSup { size 8{2} } } over {R} } } {} , where V size 12{V} {} is the voltage drop across the resistor (not the full voltage of the source). The same values will be obtained.

Strategy and Solution for (e)

The easiest way to calculate power output of the source is to use P = IV size 12{P= ital "IV"} {} , where V size 12{V} {} is the source voltage. This gives

P = ( 0 . 600 A ) ( 12 . 0 V ) = 7 . 20 W . size 12{P= \( 0 "." "600"" A" \) \( "12" "." 0" V" \) =7 "." "20"" W"} {}

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introductory physics - for kpu phys 1100 (2015 edition). OpenStax CNX. May 30, 2015 Download for free at http://legacy.cnx.org/content/col11588/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introductory physics - for kpu phys 1100 (2015 edition)' conversation and receive update notifications?

Ask