<< Chapter < Page Chapter >> Page >
  • Calculate the Reynolds number for an object moving through a fluid.
  • Explain whether the Reynolds number indicates laminar or turbulent flow.
  • Describe the conditions under which an object has a terminal speed.

A moving object in a viscous fluid is equivalent to a stationary object in a flowing fluid stream. (For example, when you ride a bicycle at 10 m/s in still air, you feel the air in your face exactly as if you were stationary in a 10-m/s wind.) Flow of the stationary fluid around a moving object may be laminar, turbulent, or a combination of the two. Just as with flow in tubes, it is possible to predict when a moving object creates turbulence. We use another form of the Reynolds number N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} , defined for an object moving in a fluid to be

N R = ρ vL η (object in fluid), size 12{ { {N}} sup { ' } rSub { size 8{R} } = { {ρ ital "vL"} over {η} } } {}

where L size 12{L} {} is a characteristic length of the object (a sphere’s diameter, for example), ρ size 12{ρ} {} the fluid density, η size 12{η} {} its viscosity, and v size 12{v} {} the object’s speed in the fluid. If N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} is less than about 1, flow around the object can be laminar, particularly if the object has a smooth shape. The transition to turbulent flow occurs for N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} between 1 and about 10, depending on surface roughness and so on. Depending on the surface, there can be a turbulent wake behind the object with some laminar flow over its surface. For an N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} between 10 and 10 6 size 12{"10" rSup { size 8{6} } } {} , the flow may be either laminar or turbulent and may oscillate between the two. For N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} greater than about 10 6 size 12{"10" rSup { size 8{6} } } {} , the flow is entirely turbulent, even at the surface of the object. (See [link] .) Laminar flow occurs mostly when the objects in the fluid are small, such as raindrops, pollen, and blood cells in plasma.

Does a ball have a turbulent wake?

Calculate the Reynolds number N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} for a ball with a 7.40-cm diameter thrown at 40.0 m/s.

Strategy

We can use N R = ρ vL η size 12{ { {N}} sup { ' } rSub { size 8{R} } = { {ρ ital "vL"} over {η} } } {} to calculate N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} , since all values in it are either given or can be found in tables of density and viscosity.

Solution

Substituting values into the equation for N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} yields

N R = ρ vL η = ( 1 . 29 kg/m 3 ) ( 40.0 m/s ) ( 0.0740 m ) 1.81 × 10 5 1.00 Pa s = 2.11 × 10 5 .

Discussion

This value is sufficiently high to imply a turbulent wake. Most large objects, such as airplanes and sailboats, create significant turbulence as they move. As noted before, the Bernoulli principle gives only qualitatively-correct results in such situations.

One of the consequences of viscosity is a resistance force called viscous drag     F V size 12{F rSub { size 8{V} } } {} that is exerted on a moving object. This force typically depends on the object’s speed (in contrast with simple friction). Experiments have shown that for laminar flow ( N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} less than about one) viscous drag is proportional to speed, whereas for N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} between about 10 and 10 6 size 12{"10" rSup { size 8{6} } } {} , viscous drag is proportional to speed squared. (This relationship is a strong dependence and is pertinent to bicycle racing, where even a small headwind causes significantly increased drag on the racer. Cyclists take turns being the leader in the pack for this reason.) For N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} greater than 10 6 size 12{"10" rSup { size 8{6} } } {} , drag increases dramatically and behaves with greater complexity. For laminar flow around a sphere, F V size 12{F rSub { size 8{V} } } {} is proportional to fluid viscosity η size 12{η} {} , the object’s characteristic size L size 12{L} {} , and its speed v size 12{v} {} . All of which makes sense—the more viscous the fluid and the larger the object, the more drag we expect. Recall Stoke’s law F S = 6 πrηv size 12{F rSub { size 8{S} } =6πrηv} {} . For the special case of a small sphere of radius R size 12{R} {} moving slowly in a fluid of viscosity η size 12{η} {} , the drag force F S size 12{F rSub { size 8{S} } } {} is given by

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics ii. OpenStax CNX. Nov 29, 2012 Download for free at http://legacy.cnx.org/content/col11458/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics ii' conversation and receive update notifications?

Ask