<< Chapter < Page Chapter >> Page >
  • Describe the electric and magnetic waves as they move out from a source, such as an AC generator.
  • Explain the mathematical relationship between the magnetic field strength and the electrical field strength.
  • Calculate the maximum strength of the magnetic field in an electromagnetic wave, given the maximum electric field strength.

We can get a good understanding of electromagnetic waves    (EM) by considering how they are produced. Whenever a current varies, associated electric and magnetic fields vary, moving out from the source like waves. Perhaps the easiest situation to visualize is a varying current in a long straight wire, produced by an AC generator at its center, as illustrated in [link] .

A long straight gray wire with an A C generator at its center, functioning as a broadcast antenna for electromagnetic waves, is shown. The wave distributions at four different times are shown in four different parts. Part a of the diagram shows a long straight gray wire with an A C generator at its center. The time is marked t equals zero. The bottom part of the antenna is positive and the upper end of the antenna is negative. An electric field E acting upward is shown by an upward arrow. Part b of the diagram shows a long straight gray wire with an A C generator at its center. The time is marked t equals capital T divided by four. The antenna has no polarity marked and a wave is shown to emerge from the A C source. An electric field E acting upward as shown by an upward arrow. The electric field E propagates away from the antenna at the speed of light, forming part of the electromagnetic wave from the A C source. A quarter portion of the wave is shown above the horizontal axis. Part c of the diagram shows a long straight gray wire with an A C generator at its center. The time is marked t equals capital T divided by two. The bottom part of the antenna is negative and the upper end of the antenna is positive and a wave is shown to emerge from the A C source. The electric field E propagates away from the antenna at the speed of light, forming part of the electromagnetic wave from the A C source. A quarter portion of the wave is shown below the horizontal axis and a quarter portion of the wave is above the horizontal axis. Part d of the diagram shows a long straight gray wire with an AC generator at its center. The time is marked t equals capital T. The bottom part of the antenna is positive and the upper end of the antenna is negative. A wave is shown to emerge from the A C source. The electric field E propagates away from the antenna at the speed of light, forming part of the electromagnetic wave from the A C source. A quarter portion of the wave is shown above the horizontal axis followed by a half wave below the horizontal axis and then again a quarter of a wave above the horizontal axis.
This long straight gray wire with an AC generator at its center becomes a broadcast antenna for electromagnetic waves. Shown here are the charge distributions at four different times. The electric field ( E size 12{E} {} ) propagates away from the antenna at the speed of light, forming part of an electromagnetic wave.

The electric field    ( E size 12{E} {} ) shown surrounding the wire is produced by the charge distribution on the wire. Both the E size 12{E} {} and the charge distribution vary as the current changes. The changing field propagates outward at the speed of light.

There is an associated magnetic field    ( B size 12{B} {} ) which propagates outward as well (see [link] ). The electric and magnetic fields are closely related and propagate as an electromagnetic wave. This is what happens in broadcast antennae such as those in radio and TV stations.

Closer examination of the one complete cycle shown in [link] reveals the periodic nature of the generator-driven charges oscillating up and down in the antenna and the electric field produced. At time t = 0 size 12{t=0} {} , there is the maximum separation of charge, with negative charges at the top and positive charges at the bottom, producing the maximum magnitude of the electric field (or E size 12{E} {} -field) in the upward direction. One-fourth of a cycle later, there is no charge separation and the field next to the antenna is zero, while the maximum E size 12{E} {} -field has moved away at speed c size 12{c} {} .

As the process continues, the charge separation reverses and the field reaches its maximum downward value, returns to zero, and rises to its maximum upward value at the end of one complete cycle. The outgoing wave has an amplitude    proportional to the maximum separation of charge. Its wavelength     λ size 12{ left (λ right )} {} is proportional to the period of the oscillation and, hence, is smaller for short periods or high frequencies. (As usual, wavelength and frequency     f size 12{ left (f right )} {} are inversely proportional.)

Electric and magnetic waves: moving together

Following Ampere’s law, current in the antenna produces a magnetic field, as shown in [link] . The relationship between E size 12{E} {} and B size 12{B} {} is shown at one instant in [link] (a). As the current varies, the magnetic field varies in magnitude and direction.

Part a of the diagram shows a long straight gray wire with an A C generator at its center, functioning as a broadcast antenna. The antenna has a current I flowing vertically upward. The bottom end of the antenna is negative and the upper end of the antenna is positive. An electric field is shown to act vertically downward. The magnetic field lines B produced in the antenna are circular in direction around the wire. Part b of the diagram shows a long straight gray wire with an A C generator at its center, functioning as a broadcast antenna. The electric field E and magnetic field B near the wire are shown perpendicular to each other. Part c of the diagram shows a long straight gray wire with an A C generator at its center, functioning as a broadcast antenna. The current is shown to flow in the antenna. The magnetic field varies with the current and propagates away from the antenna as a sine wave in the horizontal plane. The vibrations in the wave are marked as small arrows along the wave.
(a) The current in the antenna produces the circular magnetic field lines. The current ( I size 12{I} {} ) produces the separation of charge along the wire, which in turn creates the electric field as shown. (b) The electric and magnetic fields ( E size 12{E} {} and B size 12{B} {} ) near the wire are perpendicular; they are shown here for one point in space. (c) The magnetic field varies with current and propagates away from the antenna at the speed of light.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introduction to physics for vanguard high school (derived from college physics). OpenStax CNX. Oct 15, 2014 Download for free at http://legacy.cnx.org/content/col11715/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introduction to physics for vanguard high school (derived from college physics)' conversation and receive update notifications?

Ask