<< Chapter < Page Chapter >> Page >
  • Null Hypothesis H 0 : The population correlation coefficient IS NOT significantly different from zero. There IS NOT a significant linear relationship(correlation) between x and y in the population.
  • Alternate Hypothesis H a : The population correlation coefficient IS significantly DIFFERENT FROM zero. There IS A SIGNIFICANT LINEAR RELATIONSHIP (correlation) between x and y in the population.

Drawing a conclusion:

There are two methods of making the decision. The two methods are equivalent and give the same result.

  • Method 1: Using the p -value
  • Method 2: Using a table of critical values

In this chapter of this textbook, we will always use a significance level of 5%, α = 0.05

Note

Using the p -value method, you could choose any appropriate significance level you want; you are not limited to using α = 0.05. But the table of critical values provided in this textbook assumes that we are using a significance level of 5%, α = 0.05. (If we wanted to use a different significance level than 5% with the critical value method, we would need different tables of critical values that are not provided in this textbook.)

Method 1: using a p -value to make a decision

To calculate the p -value using LinRegTTEST:
On the LinRegTTEST input screen, on the line prompt for β or ρ , highlight " ≠ 0 "
The output screen shows the p-value on the line that reads "p =".
(Most computer statistical software can calculate the p -value.)

    If the p -value is less than the significance level ( α = 0.05):

  • Decision: Reject the null hypothesis.
  • Conclusion: "There is sufficient evidence to conclude that there is a significant linear relationship between x and y because the correlation coefficient is significantly different from zero."

    If the p -value is not less than the significance level ( α = 0.05)

  • Decision: DO NOT REJECT the null hypothesis.
  • Conclusion: "There is insufficient evidence to conclude that there is a significant linear relationship between x and y because the correlation coefficient is NOT significantly different from zero."

    Calculation notes:

  • You will use technology to calculate the p -value. The following describes the calculations to compute the test statistics and the p -value:
  • The p -value is calculated using a t -distribution with n - 2 degrees of freedom.
  • The formula for the test statistic is t = r n 2 1 r 2 . The value of the test statistic, t , is shown in the computer or calculator output along with the p -value. The test statistic t has the same sign as the correlation coefficient r .
  • The p -value is the combined area in both tails.

An alternative way to calculate the p -value (p) given by LinRegTTest is the command 2*tcdf(abs(t),10^99, n-2) in 2nd DISTR.

    Third-exam vs final-exam example: p -value method

  • Consider the third exam/final exam example .
  • The line of best fit is: ŷ = -173.51 + 4.83 x with r = 0.6631 and there are n = 11 data points.
  • Can the regression line be used for prediction? Given a third exam score ( x value), can we use the line to predict the final exam score (predicted y value)?

H 0 : ρ = 0

H a : ρ ≠ 0

α = 0.05

  • The p -value is 0.026 (from LinRegTTest on your calculator or from computer software).
  • The p -value, 0.026, is less than the significance level of α = 0.05.
  • Decision: Reject the Null Hypothesis H 0
  • Conclusion: There is sufficient evidence to conclude that there is a significant linear relationship between the third exam score ( x ) and the final exam score ( y ) because the correlation coefficient is significantly different from zero.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introductory statistics fall 2014. OpenStax CNX. Jun 30, 2014 Download for free at http://legacy.cnx.org/content/col11669/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introductory statistics fall 2014' conversation and receive update notifications?

Ask