<< Chapter < Page Chapter >> Page >

From complex sinusoids to complex exponentials

Recall the form of a discrete-time complex sinusoid: $x[n]=e^{j(\omega n + \phi)$. As we have already seen, that signal itself is complex-valued, i.e., it has both a real and an imaginary part. But look closely at just the exponent, and you will see that the exponent itself is purely imaginary.

Suppose we let the exponent be complex-valued, say of the form $a+jb$. Then we have $e^{(a+jb)n}=e^{an}e^{jbn}=(e^a)^n e^{jbn}$. So the result is a complex sinusoid multipled by a real exponential signal (whose base is $e^a$).

Complex exponentials, defined

We do not typically represent complex exponentials in the way derived above, but rather express them in the form $x[n]=z^n$, where $z$ is a complex number. Being a complex number, it lies on the complex plane with a magnitude of $|z|$ and an angle of $\angle z$ we define as $\omega$. So then, if we would like to express $x[n]=z^n$ as a combination of a real exponential and a complex sinusoid, as above, we have: $x[n]=z^n=|z|^n e^{j\omega n}$. Below are some plots of complex exponentials for different values of $z$.
Image Image
The real and imaginary parts of a complex exponential $x^n$ for which $|z|\lt 1$.
Image Image
The real and imaginary parts of a complex exponential $x^n$ for which $|z|\gt 1$.

So when the magnitude $|z|$ is greater than 1, we have a signal that oscillates and exponentially grows with time, and if the magnitude is less than 1, it decays over time. And, you guessed it, if the magnitude is exactly equal to 1, it does not grow or decay, but only oscillates. In fact, if the magnitude is 1, the complex exponential is, by definition, simply a complex sinusoid: $|1|^n e^{j\omega n}=e^{j\omega n}$. Therefore you can see that complex sinusoids are a subset of the more general complex exponential signals.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Discrete-time signals and systems. OpenStax CNX. Oct 07, 2015 Download for free at https://legacy.cnx.org/content/col11868/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Discrete-time signals and systems' conversation and receive update notifications?

Ask