<< Chapter < Page Chapter >> Page >

Mathematics

Grade 9

Numbers

Module 2

Easier algebra with exponents

Easier algebra with exponents

CLASS WORK

  • Do you remember how exponents work? Write down the meaning of “three to the power seven”. What is the base? What is the exponent? Can you explain clearly what a power is?
  • In this section you will find many numerical examples; use your calculator to work through them to develop confidence in the methods.

1 DEFINITION

2 3 = 2 × 2 × 2 and a 4 = a × a × a × a and b × b × b = b 3

also

(a+b) 3 = (a+b) × (a+b) × (a+b) and 2 3 4 = 2 3 × 2 3 × 2 3 × 2 3 size 12{ left ( { {2} over {3} } right ) rSup { size 8{4} } = left ( { {2} over {3} } right ) times left ( { {2} over {3} } right ) times left ( { {2} over {3} } right ) times left ( { {2} over {3} } right )} {}

1.1 Write the following expressions in expanded form:

4 3 ; (p+2) 5 ; a 1 ; (0,5) 7 ; b 2 × b 3 ;

1.2 Write these expressions as powers:

7 × 7 × 7 × 7

y × y × y × y × y

–2 × –2 × –2

(x+y) × (x+y) × (x+y) × (x+y)

1.3 Answer without calculating: Is (–7) 6 the same as –7 6 ?

  • Now use your calculator to check whether they are the same.
  • Compare the following pairs, but first guess the answer before using your calculator to see how good your estimate was.

–5 2 and (–5) 2 –12 5 and (–12) 5 –1 3 and (–1) 3

  • By now you should have a good idea how brackets influence your calculations – write it down carefully to help you remember to use it when the problems become harder.
  • The definition is:

a r = a × a × a × a × . . . (There must be r a’s, and r must be a natural number)

  • It is good time to start memorising the most useful powers:

2 2 = 4; 2 3 = 8; 2 4 = 16; etc. 3 2 = 9; 3 3 = 27; 3 4 = 81; etc. 4 2 = 16; 4 3 = 64; etc.

Most problems with exponents have to be done without a calculator!

2 MULTIPLICATION

  • Do you remember that g 3 × g 8 = g 11 ? Important words: multiply ; same base

2.1 Simplify: (don’t use expanded form)

7 7 × 7 7

(–2) 4 × (–2) 13

( ½ ) 1 × ( ½ ) 2 × ( ½ ) 3

(a+b) a × (a+b) b

  • We multiply powers with the same base according to this rule:

a x × a y = a x+y also a x + y = a x × a y = a y × a x size 12{a rSup { size 8{x+y} } =a rSup { size 8{x} } times a rSup { size 8{y} } =a rSup { size 8{y} } times a rSup { size 8{x} } } {} , e.g. 8 14 = 8 4 × 8 10 size 12{8 rSup { size 8{"14"} } =8 rSup { size 8{4} } times 8 rSup { size 8{"10"} } } {}

3 DIVISION

  • 4 6 4 2 = 4 6 2 = 4 4 size 12{ { {4 rSup { size 8{6} } } over {4 rSup { size 8{2} } } } =4 rSup { size 8{6 - 2} } =4 rSup { size 8{4} } } {} is how it works. Important words: divide ; same base

3.1 Try these: a 6 a y size 12{ { {a rSup { size 8{6} } } over {a rSup { size 8{y} } } } } {} ; 3 23 3 21 size 12{ { {3 rSup { size 8{"23"} } } over {3 rSup { size 8{"21"} } } } } {} ; a + b p a + b 12 size 12{ { { left (a+b right ) rSup { size 8{p} } } over { left (a+b right ) rSup { size 8{"12"} } } } } {} ; a 7 a 7 size 12{ { {a rSup { size 8{7} } } over {a rSup { size 8{7} } } } } {}

  • The rule for dividing powers is: a x a y = a x y size 12{ { {a rSup { size 8{x} } } over {a rSup { size 8{y} } } } =a rSup { size 8{x - y} } } {} .

Also a x y = a x a y size 12{a rSup { size 8{x - y} } = { {a rSup { size 8{x} } } over {a rSup { size 8{y} } } } } {} , e.g. a 7 = a 20 a 13 size 12{a rSup { size 8{7} } = { {a rSup { size 8{"20"} } } over {a rSup { size 8{"13"} } } } } {}

4 RAISING A POWER TO A POWER

  • e.g. 3 2 4 size 12{ left (3 rSup { size 8{2} } right ) rSup { size 8{4} } } {} = 3 2 × 4 size 12{3 rSup { size 8{2 times 4} } } {} = 3 8 size 12{3 rSup { size 8{8} } } {} .

4.1 Do the following:

  • This is the rule: a x y = a xy size 12{ left (a rSup { size 8{x} } right ) rSup { size 8{y} } =a rSup { size 8{ ital "xy"} } } {} also a xy = a x y = a y x size 12{a rSup { size 8{ ital "xy"} } = left (a rSup { size 8{x} } right ) rSup { size 8{y} } = left (a rSup { size 8{y} } right ) rSup { size 8{x} } } {} , e.g. 6 18 = 6 6 3 size 12{6 rSup { size 8{"18"} } = left (6 rSup { size 8{6} } right ) rSup { size 8{3} } } {}

5 THE POWER OF A PRODUCT

  • This is how it works:

(2a) 3 = (2a) × (2a) × (2a) = 2 × a × 2 × a × 2 × a = 2 × 2 × 2 × a × a × a = 8a 3

  • It is usually done in two steps, like this: (2a) 3 = 2 3 × a 3 = 8a 3

5.1 Do these yourself: (4x) 2 ; (ab) 6 ; (3 × 2) 4 ; ( ½ x) 2 ; (a 2 b 3 ) 2

  • It must be clear to you that the exponent belongs to each factor in the brackets.
  • The rule: (ab) x = a x b x also a p × b p = ab b size 12{a rSup { size 8{p} } times b rSup { size 8{p} } = left ( ital "ab" right ) rSup { size 8{b} } } {} e.g. 14 3 = 2 × 7 3 = 2 3 7 3 size 12{"14" rSup { size 8{3} } = left (2 times 7 right ) rSup { size 8{3} } =2 rSup { size 8{3} } 7 rSup { size 8{3} } } {} and 3 2 × 4 2 = 3 × 4 2 = 12 2 size 12{3 rSup { size 8{2} } times 4 rSup { size 8{2} } = left (3 times 4 right ) rSup { size 8{2} } ="12" rSup { size 8{2} } } {}

6 A POWER OF A FRACTION

  • This is much the same as the power of a product. a b 3 = a 3 b 3 size 12{ left ( { {a} over {b} } right ) rSup { size 8{3} } = { {a rSup { size 8{3} } } over {b rSup { size 8{3} } } } } {}

6.1 Do these, but be careful: 2 3 p size 12{ left ( { {2} over {3} } right ) rSup { size 8{p} } } {} 2 2 3 size 12{ left ( { { left ( - 2 right )} over {2} } right ) rSup { size 8{3} } } {} x 2 y 3 2 size 12{ left ( { {x rSup { size 8{2} } } over {y rSup { size 8{3} } } } right ) rSup { size 8{2} } } {} a x b y 2 size 12{ left ( { {a rSup { size 8{ - x} } } over {b rSup { size 8{ - y} } } } right ) rSup { size 8{ - 2} } } {}

  • Again, the exponent belongs to both the numerator and the denominator.
  • The rule: a b m = a m b m size 12{ left ( { {a} over {b} } right ) rSup { size 8{m} } = { {a rSup { size 8{m} } } over {b rSup { size 8{m} } } } } {} and a m b m = a b m size 12{ { {a rSup { size 8{m} } } over {b rSup { size 8{m} } } } = left ( { {a} over {b} } right ) rSup { size 8{m} } } {} e.g. 2 3 3 = 2 3 3 3 = 8 27 size 12{ left ( { {2} over {3} } right ) rSup { size 8{3} } = { {2 rSup { size 8{3} } } over {3 rSup { size 8{3} } } } = { {8} over {"27"} } } {} and a 2x b x = a 2 x b x = a 2 b x size 12{ { {a rSup { size 8{2x} } } over {b rSup { size 8{x} } } } = { { left (a rSup { size 8{2} } right ) rSup { size 8{x} } } over {b rSup { size 8{x} } } } = left ( { {a rSup { size 8{2} } } over {b} } right ) rSup { size 8{x} } } {}

end of CLASS WORK

TUTORIAL

  • Apply the rules together to simplify these expressions without a calculator.

1. a 5 × a 7 a × a 8 size 12{ { {a rSup { size 8{5} } times a rSup { size 8{7} } } over {a times a rSup { size 8{8} } } } } {} 2. x 3 × y 4 × x 2 y 5 x 4 y 8 size 12{ { {x rSup { size 8{3} } times y rSup { size 8{4} } times x rSup { size 8{2} } y rSup { size 8{5} } } over {x rSup { size 8{4} } y rSup { size 8{8} } } } } {}

3. a 2 b 3 c 2 × ac 2 2 × bc 2 size 12{ left (a rSup { size 8{2} } b rSup { size 8{3} } c right ) rSup { size 8{2} } times left ( ital "ac" rSup { size 8{2} } right ) rSup { size 8{2} } times left ( ital "bc" right ) rSup { size 8{2} } } {} 4. a 3 × b 2 × a 3 a × b 5 b 4 × ab 3 size 12{a rSup { size 8{3} } times b rSup { size 8{2} } times { {a rSup { size 8{3} } } over {a} } times { {b rSup { size 8{5} } } over {b rSup { size 8{4} } } } times left ( ital "ab" right ) rSup { size 8{3} } } {}

5. 2 xy × 2x 2 y 4 2 × x 2 y 3 2 xy 3 size 12{ left (2 ital "xy" right ) times left (2x rSup { size 8{2} } y rSup { size 8{4} } right ) rSup { size 8{2} } times left ( { { left (x rSup { size 8{2} } y right ) rSup { size 8{3} } } over { left (2 ital "xy" right ) rSup { size 8{3} } } } right )} {} 6. 2 3 × 2 2 × 2 7 8 × 4 × 8 × 2 × 8 size 12{ { {2 rSup { size 8{3} } times 2 rSup { size 8{2} } times 2 rSup { size 8{7} } } over {8 times 4 times 8 times 2 times 8} } } {}

end of TUTORIAL

Some more rules

CLASS WORK

1 Consider this case: a 5 a 3 = a 5 3 = a 2 size 12{ { {a rSup { size 8{5} } } over {a rSup { size 8{3} } } } =a rSup { size 8{5 - 3} } =a rSup { size 8{2} } } {}

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Mathematics grade 9. OpenStax CNX. Sep 14, 2009 Download for free at http://cnx.org/content/col11056/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Mathematics grade 9' conversation and receive update notifications?

Ask