<< Chapter < Page Chapter >> Page >

Mathematics

Grade 9

Numbers

Module 2

Easier algebra with exponents

Easier algebra with exponents

CLASS WORK

  • Do you remember how exponents work? Write down the meaning of “three to the power seven”. What is the base? What is the exponent? Can you explain clearly what a power is?
  • In this section you will find many numerical examples; use your calculator to work through them to develop confidence in the methods.

1 DEFINITION

2 3 = 2 × 2 × 2 and a 4 = a × a × a × a and b × b × b = b 3

also

(a+b) 3 = (a+b) × (a+b) × (a+b) and 2 3 4 = 2 3 × 2 3 × 2 3 × 2 3 size 12{ left ( { {2} over {3} } right ) rSup { size 8{4} } = left ( { {2} over {3} } right ) times left ( { {2} over {3} } right ) times left ( { {2} over {3} } right ) times left ( { {2} over {3} } right )} {}

1.1 Write the following expressions in expanded form:

4 3 ; (p+2) 5 ; a 1 ; (0,5) 7 ; b 2 × b 3 ;

1.2 Write these expressions as powers:

7 × 7 × 7 × 7

y × y × y × y × y

–2 × –2 × –2

(x+y) × (x+y) × (x+y) × (x+y)

1.3 Answer without calculating: Is (–7) 6 the same as –7 6 ?

  • Now use your calculator to check whether they are the same.
  • Compare the following pairs, but first guess the answer before using your calculator to see how good your estimate was.

–5 2 and (–5) 2 –12 5 and (–12) 5 –1 3 and (–1) 3

  • By now you should have a good idea how brackets influence your calculations – write it down carefully to help you remember to use it when the problems become harder.
  • The definition is:

a r = a × a × a × a × . . . (There must be r a’s, and r must be a natural number)

  • It is good time to start memorising the most useful powers:

2 2 = 4; 2 3 = 8; 2 4 = 16; etc. 3 2 = 9; 3 3 = 27; 3 4 = 81; etc. 4 2 = 16; 4 3 = 64; etc.

Most problems with exponents have to be done without a calculator!

2 MULTIPLICATION

  • Do you remember that g 3 × g 8 = g 11 ? Important words: multiply ; same base

2.1 Simplify: (don’t use expanded form)

7 7 × 7 7

(–2) 4 × (–2) 13

( ½ ) 1 × ( ½ ) 2 × ( ½ ) 3

(a+b) a × (a+b) b

  • We multiply powers with the same base according to this rule:

a x × a y = a x+y also a x + y = a x × a y = a y × a x size 12{a rSup { size 8{x+y} } =a rSup { size 8{x} } times a rSup { size 8{y} } =a rSup { size 8{y} } times a rSup { size 8{x} } } {} , e.g. 8 14 = 8 4 × 8 10 size 12{8 rSup { size 8{"14"} } =8 rSup { size 8{4} } times 8 rSup { size 8{"10"} } } {}

3 DIVISION

  • 4 6 4 2 = 4 6 2 = 4 4 size 12{ { {4 rSup { size 8{6} } } over {4 rSup { size 8{2} } } } =4 rSup { size 8{6 - 2} } =4 rSup { size 8{4} } } {} is how it works. Important words: divide ; same base

3.1 Try these: a 6 a y size 12{ { {a rSup { size 8{6} } } over {a rSup { size 8{y} } } } } {} ; 3 23 3 21 size 12{ { {3 rSup { size 8{"23"} } } over {3 rSup { size 8{"21"} } } } } {} ; a + b p a + b 12 size 12{ { { left (a+b right ) rSup { size 8{p} } } over { left (a+b right ) rSup { size 8{"12"} } } } } {} ; a 7 a 7 size 12{ { {a rSup { size 8{7} } } over {a rSup { size 8{7} } } } } {}

  • The rule for dividing powers is: a x a y = a x y size 12{ { {a rSup { size 8{x} } } over {a rSup { size 8{y} } } } =a rSup { size 8{x - y} } } {} .

Also a x y = a x a y size 12{a rSup { size 8{x - y} } = { {a rSup { size 8{x} } } over {a rSup { size 8{y} } } } } {} , e.g. a 7 = a 20 a 13 size 12{a rSup { size 8{7} } = { {a rSup { size 8{"20"} } } over {a rSup { size 8{"13"} } } } } {}

4 RAISING A POWER TO A POWER

  • e.g. 3 2 4 size 12{ left (3 rSup { size 8{2} } right ) rSup { size 8{4} } } {} = 3 2 × 4 size 12{3 rSup { size 8{2 times 4} } } {} = 3 8 size 12{3 rSup { size 8{8} } } {} .

4.1 Do the following:

  • This is the rule: a x y = a xy size 12{ left (a rSup { size 8{x} } right ) rSup { size 8{y} } =a rSup { size 8{ ital "xy"} } } {} also a xy = a x y = a y x size 12{a rSup { size 8{ ital "xy"} } = left (a rSup { size 8{x} } right ) rSup { size 8{y} } = left (a rSup { size 8{y} } right ) rSup { size 8{x} } } {} , e.g. 6 18 = 6 6 3 size 12{6 rSup { size 8{"18"} } = left (6 rSup { size 8{6} } right ) rSup { size 8{3} } } {}

5 THE POWER OF A PRODUCT

  • This is how it works:

(2a) 3 = (2a) × (2a) × (2a) = 2 × a × 2 × a × 2 × a = 2 × 2 × 2 × a × a × a = 8a 3

  • It is usually done in two steps, like this: (2a) 3 = 2 3 × a 3 = 8a 3

5.1 Do these yourself: (4x) 2 ; (ab) 6 ; (3 × 2) 4 ; ( ½ x) 2 ; (a 2 b 3 ) 2

  • It must be clear to you that the exponent belongs to each factor in the brackets.
  • The rule: (ab) x = a x b x also a p × b p = ab b size 12{a rSup { size 8{p} } times b rSup { size 8{p} } = left ( ital "ab" right ) rSup { size 8{b} } } {} e.g. 14 3 = 2 × 7 3 = 2 3 7 3 size 12{"14" rSup { size 8{3} } = left (2 times 7 right ) rSup { size 8{3} } =2 rSup { size 8{3} } 7 rSup { size 8{3} } } {} and 3 2 × 4 2 = 3 × 4 2 = 12 2 size 12{3 rSup { size 8{2} } times 4 rSup { size 8{2} } = left (3 times 4 right ) rSup { size 8{2} } ="12" rSup { size 8{2} } } {}

6 A POWER OF A FRACTION

  • This is much the same as the power of a product. a b 3 = a 3 b 3 size 12{ left ( { {a} over {b} } right ) rSup { size 8{3} } = { {a rSup { size 8{3} } } over {b rSup { size 8{3} } } } } {}

6.1 Do these, but be careful: 2 3 p size 12{ left ( { {2} over {3} } right ) rSup { size 8{p} } } {} 2 2 3 size 12{ left ( { { left ( - 2 right )} over {2} } right ) rSup { size 8{3} } } {} x 2 y 3 2 size 12{ left ( { {x rSup { size 8{2} } } over {y rSup { size 8{3} } } } right ) rSup { size 8{2} } } {} a x b y 2 size 12{ left ( { {a rSup { size 8{ - x} } } over {b rSup { size 8{ - y} } } } right ) rSup { size 8{ - 2} } } {}

  • Again, the exponent belongs to both the numerator and the denominator.
  • The rule: a b m = a m b m size 12{ left ( { {a} over {b} } right ) rSup { size 8{m} } = { {a rSup { size 8{m} } } over {b rSup { size 8{m} } } } } {} and a m b m = a b m size 12{ { {a rSup { size 8{m} } } over {b rSup { size 8{m} } } } = left ( { {a} over {b} } right ) rSup { size 8{m} } } {} e.g. 2 3 3 = 2 3 3 3 = 8 27 size 12{ left ( { {2} over {3} } right ) rSup { size 8{3} } = { {2 rSup { size 8{3} } } over {3 rSup { size 8{3} } } } = { {8} over {"27"} } } {} and a 2x b x = a 2 x b x = a 2 b x size 12{ { {a rSup { size 8{2x} } } over {b rSup { size 8{x} } } } = { { left (a rSup { size 8{2} } right ) rSup { size 8{x} } } over {b rSup { size 8{x} } } } = left ( { {a rSup { size 8{2} } } over {b} } right ) rSup { size 8{x} } } {}

end of CLASS WORK

TUTORIAL

  • Apply the rules together to simplify these expressions without a calculator.

1. a 5 × a 7 a × a 8 size 12{ { {a rSup { size 8{5} } times a rSup { size 8{7} } } over {a times a rSup { size 8{8} } } } } {} 2. x 3 × y 4 × x 2 y 5 x 4 y 8 size 12{ { {x rSup { size 8{3} } times y rSup { size 8{4} } times x rSup { size 8{2} } y rSup { size 8{5} } } over {x rSup { size 8{4} } y rSup { size 8{8} } } } } {}

3. a 2 b 3 c 2 × ac 2 2 × bc 2 size 12{ left (a rSup { size 8{2} } b rSup { size 8{3} } c right ) rSup { size 8{2} } times left ( ital "ac" rSup { size 8{2} } right ) rSup { size 8{2} } times left ( ital "bc" right ) rSup { size 8{2} } } {} 4. a 3 × b 2 × a 3 a × b 5 b 4 × ab 3 size 12{a rSup { size 8{3} } times b rSup { size 8{2} } times { {a rSup { size 8{3} } } over {a} } times { {b rSup { size 8{5} } } over {b rSup { size 8{4} } } } times left ( ital "ab" right ) rSup { size 8{3} } } {}

5. 2 xy × 2x 2 y 4 2 × x 2 y 3 2 xy 3 size 12{ left (2 ital "xy" right ) times left (2x rSup { size 8{2} } y rSup { size 8{4} } right ) rSup { size 8{2} } times left ( { { left (x rSup { size 8{2} } y right ) rSup { size 8{3} } } over { left (2 ital "xy" right ) rSup { size 8{3} } } } right )} {} 6. 2 3 × 2 2 × 2 7 8 × 4 × 8 × 2 × 8 size 12{ { {2 rSup { size 8{3} } times 2 rSup { size 8{2} } times 2 rSup { size 8{7} } } over {8 times 4 times 8 times 2 times 8} } } {}

end of TUTORIAL

Some more rules

CLASS WORK

1 Consider this case: a 5 a 3 = a 5 3 = a 2 size 12{ { {a rSup { size 8{5} } } over {a rSup { size 8{3} } } } =a rSup { size 8{5 - 3} } =a rSup { size 8{2} } } {}

Questions & Answers

1. Discuss the processes involved during exchange of fluids between intra and extracellular space.
Mustapha Reply
what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is biology
Inenevwo
what is sexual reproductive system
James
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Mathematics grade 9. OpenStax CNX. Sep 14, 2009 Download for free at http://cnx.org/content/col11056/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Mathematics grade 9' conversation and receive update notifications?

Ask