<< Chapter < Page Chapter >> Page >
This module is part of a collection of modules for a class project on matrix completion techniques for the sensor network localization problem done for the Fall, 2009 offering of Prof. Baraniuk's ELEC 301 course at Rice University.

Results, conclusions, and future work

Random knock-out trials

The results from the simulations for the random knock-out runs are displayed in the figures below, which depict the average relative Frobenius-norm error over 25 trials versus fraction of unknown entries.

Simulation results for random knock-out trials with no noise.
Simulation results for random knock-out trials with noise present.

As these two figures illustrate, the results for the random knock-out trials were quite good. As expected, as the fraction of unknown entries becomes large, the error eventually becomes severe, while for very low fractions of unknown entries, the error is extremely small. What is amazing is that for moderate fractions of unknown entries the algorithm still performs remarkably well, and its performance doesn't degrade much by the loss of a few more entries:the graphs are nearly flat over the range from 0.3 to 0.8! As the second figure shows (and as might be imagined), noise only makes the error worse; however, the plot also shows that the algorithm is reasonably robust to noise in that perturbations of the distance data by small amounts of noise don't become magnified into massive errors.

As an example, consider Figure 3 below, which displays the results of a typical no-noise random knock-out run with knock-out probability 0.5. On the left is a plot of the sparsity pattern for the incomplete matrix. A blue dot represents a known entry, while a blank space represents an unknown one. On the right is a plot of what the network looks like after being reconstructed using multidimensional scaling. Observe that the red circles for the networkcorresponding to the network generated by the completed matrix enclose the blue dots of the original network's structure quite well, indicating that the match is very good.

Results from a typical no-noise random knock-out trial with a knock-out probability of 0.5. Left: Sparsity pattern for the incomplete matrix. Right: Overlay figure demonstrating degree of agreement between the original network and the network generated from the completed matrix.

For an illustration of how the results look with noise, see Figure 4 below. This figure shows the results of a typical noise-present random knock-out run with knock-out probability of 0.5 and noise standard deviation 0.05. The agreement in the reconstructed network is not as good as it was for the no-noise case, but the points of the reconstructed network are “clustered" in the right locations, and some of the prominent features of the original networkare present in the reconstructed one as well.

Results from a typical noise-present random knock-out trial with a knock-out probability of 0.5 and a noise standard deviation of 0.05. Left: Sparsity pattern for the incomplete matrix. Right: Overlay figure demonstrating degree of agreementbetween the original network and the network generated from the completed matrix.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, A matrix completion approach to sensor network localization. OpenStax CNX. Dec 17, 2009 Download for free at http://cnx.org/content/col11147/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'A matrix completion approach to sensor network localization' conversation and receive update notifications?

Ask