<< Chapter < Page Chapter >> Page >

Foundation

In beginning our study of the reactions of gases, we will assume a knowledge of the physical properties ofgases as described by the Ideal Gas Law and an understanding of these properties as given by the postulates and conclusions of the Kinetic Molecular Theory . We assume that we have developed a dynamic model of phase equilibrium in terms of competing rates. We willalso assume an understanding of the bonding, structure, and properties of individual molecules.

Goals

In performing stoichiometric calculations, we assume that we can calculate the amount of product of a reactionfrom the amount of the reactants we start with. For example, if we burn methane gas, C H 4 ( g ) , in excess oxygen, the reaction

C H 4 ( g ) + 2 O 2 ( g ) C O 2 ( g ) + 2 H 2 O ( g )

occurs, and the number of moles of C O 2 ( g ) produced is assumed to equal the number of moles of C H 4 ( g ) we start with.

From our study of phase transitions we have learned the concept of equilibrium. We observed that, in thetransition from one phase to another for a substance, under certain conditions both phases are found to coexist, and we refer to thisas phase equilibrium. It should not surprise us that these same concepts of equilibrium apply to chemical reactions as well. In the reaction , therefore, we should examine whether the reaction actually producesexactly one mole of C O 2 for every mole of C H 4 we start with or whether we wind up with an equilibrium mixture containing both C O 2 and C H 4 . We will find that different reactions provide us with varyinganswers. In many cases, virtually all reactants are consumed, producing the stoichiometric amount of product. However, in manyother cases, substantial amounts of reactant are still present when the reaction achieves equilibrium, and in other cases, almost noproduct is produced at equilibrium. Our goal will be to understand, describe and predict the reaction equilibrium.

An important corollary to this goal is to attempt to control the equilibrium. We will find that varying theconditions under which the reaction occurs can vary the amounts of reactants and products present at equilibrium. We will develop ageneral principle for predicting how the reaction conditions affect the amount of product produced at equilibrium.

Observation 1: reaction equilibrium

We begin by analyzing a significant industrial chemical process, the synthesis of ammonia gas, N H 3 , from nitrogen and hydrogen:

N 2 ( g ) + 3 H 2 ( g ) 2 N H 3 ( g )

If we start with 1 mole of N 2 and 3 moles of H 2 , the balanced equation predicts that we will produce 2 moles of N H 3 . In fact, if we carry out this reaction starting with thesequantities of nitrogen and hydrogen at 298K in a 100.0L reaction vessel, we observe that the number of moles of N H 3 produced is 1.91 mol. This "yield" is less than predicted by the balanced equation, but the difference is not dueto a limiting reagent factor. Recall that, in stoichiometry, the limiting reagent is the one that is present in less than the ratioof moles given by the balanced equation. In this case, neither N 2 nor H 2 is limiting because they are present initially in a 1:3 ratio, exactly matching the stoichiometry. Note also that this seemingdeficit in the yield is not due to any experimental error or imperfection, nor is it due to poor measurements or preparation.Rather, the observation that, at 298K, 1.91 moles rather than 2 moles are produced is completely reproducible: every measurement ofthis reaction at this temperature in this volume starting with 1 mole of N 2 and 3 moles of H 2 gives this result. We conclude that the reaction achieves reaction equilibrium in which all three gases are present in the gas mixture. We can determine the amountsof each gas at equilibrium from the stoichiometry of the reaction. When n N H 3 1.91 mol are created, the number of moles of N 2 remaining at equilibrium is n N 2 0.045 mol and n H 2 0.135 mol .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, General chemistry ii. OpenStax CNX. Mar 25, 2005 Download for free at http://cnx.org/content/col10262/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'General chemistry ii' conversation and receive update notifications?

Ask