<< Chapter < Page Chapter >> Page >
  • Describe the principle of conservation of momentum.
  • Derive an expression for the conservation of momentum.
  • Explain conservation of momentum with examples.
  • Explain the principle of conservation of momentum as it relates to atomic and subatomic particles.

Momentum is an important quantity because it is conserved. Yet it was not conserved in the examples in Impulse and Linear Momentum and Force , where large changes in momentum were produced by forces acting on the system of interest. Under what circumstances is momentum conserved?

The answer to this question entails considering a sufficiently large system. It is always possible to find a larger system in which total momentum is constant, even if momentum changes for components of the system. If a football player runs into the goalpost in the end zone, there will be a force on him that causes him to bounce backward. However, the Earth also recoils —conserving momentum—because of the force applied to it through the goalpost. Because Earth is many orders of magnitude more massive than the player, its recoil is immeasurably small and can be neglected in any practical sense, but it is real nevertheless.

Consider what happens if the masses of two colliding objects are more similar than the masses of a football player and Earth—for example, one car bumping into another, as shown in [link] . Both cars are coasting in the same direction when the lead car (labeled m 2 ) size 12{m rSub { size 8{2} } \) } {} is bumped by the trailing car (labeled m 1 ) . size 12{m rSub { size 8{1} } \) "." } {} The only unbalanced force on each car is the force of the collision. (Assume that the effects due to friction are negligible.) Car 1 slows down as a result of the collision, losing some momentum, while car 2 speeds up and gains some momentum. We shall now show that the total momentum of the two-car system remains constant.

A brown car with velocity V 1 and mass m 1 moves toward the right behind a tan car of velocity V 2 and mass m 2. The system of interest has a total momentum equal to the sum of individual momentums p 1 and p 2. The net force between them is zero before they collide with one another. The brown car after colliding with the tan car has velocity V 1prime and momentum p 1 prime and the light brown car moves with velocity V 2 prime and momentum p 2 prime. Both move in the same direction as before collision. This system of interest has a total momentum equal to the sum p 1 prime and p 2 prime.
A car of mass m 1 size 12{m rSub { size 8{1} } } {} moving with a velocity of v 1 size 12{v rSub { size 8{1} } } {} bumps into another car of mass m 2 size 12{m rSub { size 8{2} } } {} and velocity v 2 size 12{v rSub { size 8{2} } } {} that it is following. As a result, the first car slows down to a velocity of v′ 1 size 12{ { {v}} sup { ' } rSub { size 8{1} } } {} and the second speeds up to a velocity of v′ 2 size 12{ { {v}} sup { ' } rSub { size 8{2} } } {} . The momentum of each car is changed, but the total momentum p tot size 12{p rSub { size 8{"tot"} } } {} of the two cars is the same before and after the collision (if you assume friction is negligible).

Using the definition of impulse, the change in momentum of car 1 is given by

Δ p 1 = F 1 Δ t , size 12{Δp rSub { size 8{1} } =F rSub { size 8{1} } Δt} {}

where F 1 size 12{F"" lSub { size 8{1} } } {} is the force on car 1 due to car 2, and Δ t size 12{Δt} {} is the time the force acts (the duration of the collision). Intuitively, it seems obvious that the collision time is the same for both cars, but it is only true for objects traveling at ordinary speeds. This assumption must be modified for objects travelling near the speed of light, without affecting the result that momentum is conserved.

Similarly, the change in momentum of car 2 is

Δ p 2 = F 2 Δ t, size 12{Δp rSub { size 8{1} } =F rSub { size 8{1} } Δt} {}

where F 2 is the force on car 2 due to car 1, and we assume the duration of the collision Δ t size 12{?t} {} is the same for both cars. We know from Newton’s third law that F 2 = F 1 size 12{F rSub { size 8{2} } = - F rSub { size 8{1} } } {} , and so

Δ p 2 = F 1 Δ t = Δ p 1 . size 12{Δp rSub { size 8{2} } = - F rSub { size 8{1} } Δt= - Δp rSub { size 8{1} } } {}

Thus, the changes in momentum are equal and opposite, and

Δ p 1 + Δ p 2 = 0 . size 12{Δp rSub { size 8{1} } +Δp rSub { size 8{2} } =0} {}

Because the changes in momentum add to zero, the total momentum of the two-car system is constant. That is,

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Unit 6 - momentum. OpenStax CNX. Jan 22, 2016 Download for free at https://legacy.cnx.org/content/col11961/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Unit 6 - momentum' conversation and receive update notifications?

Ask